Advertisement

Sedative Hypnotic and Anesthetic Agents: Their Effect on the Heart

  • Charles I. Yang
  • Pravin Taneja
  • Peter J. Davis
Chapter
  • 1.2k Downloads

Propofol is a nonopioid, nonbarbiturate sedative hypnotic used extensively as an induction agent for general anesthesia and as a sedative in intensive care units (ICUs). The prompt recovery without residual sedation and low incidence of nausea and vomiting make propofol an appropriate choice for use in ambulatory surgery procedures.

Keywords

Respiratory Depression Anesthetic Agent Pulmonary Capillary Wedge Pressure Minimum Alveolar Concentration Inhalation Anesthetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fulton B, Sorkin EM. Propofol: an overview of its pharmacology and a review of its clinical efficacy in intensive care sedation. Drugs 1995; 50:636–657.PubMedCrossRefGoogle Scholar
  2. 2.
    Bryson HM, Fulton BR, Faulds D. Propofol: an update of its use in anesthesia and conscious sedation. Drugs 1995; 50:513–559.PubMedCrossRefGoogle Scholar
  3. 3.
    Coates DP, Monk CR, Prys-Roberts C, et al. Hemodynamic effects of the infusion of the emulsions formulation of propofol during nitrous oxide anesthesia in humans. Anesth Analg 1987; 66:64–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Wagner BK, O’Hara DA. Pharmacokinetics and pharmacodynamics of sedatives and analgesics in the treatment of agitated critically ill patients. Clin Pharmacokinet 1997; 33:426–453.PubMedCrossRefGoogle Scholar
  5. 5.
    Saarnivaara L, Hiller A, Oikkonem M. QT interval, heart rate and arterial pressures using propofol, thiopentone or methohexitone for induction of anesthesia in children. Acta Anaesthesiology Scand 1993; 37:419–423.CrossRefGoogle Scholar
  6. 6.
    Deutschman CS, Harris AP, Fleisher LA. Changes in heart rate variability under propofol anesthesia: a possible explanation for propofol-induced bradycardia. Anesth Analg 1994; 79:373–377.PubMedGoogle Scholar
  7. 7.
    Aun CS, Sung RY, O’Meara ME, et al. Cardiovascular effects of I.V. induction in children; Comparison between propofol and thiopentone. Br J Anaesth 1993; 70:647–653.PubMedCrossRefGoogle Scholar
  8. 8.
    James MK, Feldman PL, Schuster SV, et al. Opioid receptor activity of GI 87084B, a novel ultra-short acting analgesic, in isolated tissues. J Pharmacol Exp Ther 1991; 259:712–718.PubMedGoogle Scholar
  9. 9.
    James MK, Vuong A, Grizzle MK, et al. Hemodynamic effects of GI 87084B, an ultra-short acting mu-opioid analgesic, in anesthetized dogs. J Pharmacol Exp Ther 1992; 263:84–91.PubMedGoogle Scholar
  10. 10.
    Amin HM, Sopchak AM, Esposito BF, et al. Naloxone reversal of depressed ventilatory response to hypoxia during continuous infusion of remifentanil [Abstract] 1993; 79:A1203.Google Scholar
  11. 11.
    Glass PSA. Remifentanil: a new opioid. J Clin Anesth 1995; 7:558–563.PubMedCrossRefGoogle Scholar
  12. 12.
    Ansermino JM, Brooks P, Rosen D, et al. Spontaneous ventilation with remifentanil in children. Paediatr Anaesth 2005; 15:115–121.PubMedCrossRefGoogle Scholar
  13. 13.
    Chanavaz C, Tirel O, Wodey E, et al. Haemodynamic effects of remifentanil in children with and without intravenous atropine. An echocardiographic study. Paediatr Anaesth 2005; 94:74–79.Google Scholar
  14. 14.
    Herz A, Teschenmacher HJ. Activities and sites of antinociceptive action of morphine-like analgesics and kinetics of distribution following intravenous intracerebral and intraventricular application. Advance Drug Research 1971; 6:79–119.Google Scholar
  15. 15.
    Mather LE. Clinical pharmacokinetics of fentanyl and its newer derivatives. Clinical Pharmacokinetics 1983; 8:422–426.PubMedCrossRefGoogle Scholar
  16. 16.
    Stanley TH, Webster LR. Anesthetic requirements and cardiovascular effects of fentanyl-oxygen and fentanyl-diazepam-oxygen anesthesia in man. Anesth Analg 1978; 57:411–416.PubMedGoogle Scholar
  17. 17.
    Hickey P, Hansen D, Wessel D. Pulmonary and systemic hemodynamic responses to fentanyl in infants. Anesth Analg 1985; 64:483–486.PubMedGoogle Scholar
  18. 18.
    Mantegazza P, Parenti M, Tammiso R, et al. Modification of the antinociceptive effects of morphine by centrally administered diazepam and midazolam. Brit J Pharmacol 1982; 75:569–572.Google Scholar
  19. 19.
    Burtin P, Jacqz-Aigrain E, Girar P, et al. Population pharmacokinetics of midazolam in neonates. Clin Pharmacol Ther 1994; 56(6 Pt 1):615–625.Google Scholar
  20. 20.
    Forster A, Gardaz JP, Suter PM, et al. IV Midazolam as an induction agent for anaesthesia: a study in volunteers. Br J Anaesth 1980; 52:907–911.PubMedCrossRefGoogle Scholar
  21. 21.
    Reves JG, Samuelson PN, Lewis S. Midazolam maleate induction in patients with ischaemic heart disease: haemodynamic observations. Can Anaesth Soc J 1979; 26:402–409.PubMedCrossRefGoogle Scholar
  22. 22.
    Morel D, Forster A, Bachmann M, et al. Changes in breathing pattern induced by midazolam in normal subjects (Abstract). Anesthesiology 1982; 57:A481.CrossRefGoogle Scholar
  23. 23.
    Eger EI II, Bahlman SH, Munson ES. The effect of age on the rate of increase of alveolar anesthetic concentration. Anesthesiology 1971; 35:365–372.PubMedGoogle Scholar
  24. 24.
    Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 1993; 78:707–712.PubMedCrossRefGoogle Scholar
  25. 25.
    Violet JM, Downie DL, Nakisa RC, et al. Differential sensitivities of mammalian neuronal and muscle nicotinic acetylcholine receptors to general anesthetics. Anesthesiology 1997; 86:866–874.PubMedCrossRefGoogle Scholar
  26. 26.
    Kelly RE, Lien CA, Savarese JJ, et al. Depression of neuromuscular function in a patient during desflurane anesthesia. Anesth Analg 1993; 76:868–871.PubMedGoogle Scholar
  27. 27.
    Gregory GA, Eger EI II, Munson ES, et al. The relationship between age and halothane requirements in man. Anesthesiology 1969; 30:488–491.PubMedCrossRefGoogle Scholar
  28. 28.
    Johnston RR, Eger EI II, Wilson C. Comparative interaction of epinephrine with enflurane, isoflurane, and halothane in man. Anesth Analg 1976; 55:709–712.PubMedCrossRefGoogle Scholar
  29. 29.
    Eger EI, II, Gong D, Koblin DD, et al. Nephrotoxicity of sevoflurane vs desflurane anesthesia in volunteers. Anesth Analg 1997; 84:160–168.PubMedCrossRefGoogle Scholar
  30. 30.
    Harvey MA. Managing agitation in critically ill patients. Am J Crit Care 1996; 5:7–16.PubMedGoogle Scholar
  31. 31.
    Doenicke AW, Roizen MF, Rau J, et al. Reducing pain during propofol injection: the role of the solvent. Anesth Analg 1996; 82:472–474.PubMedCrossRefGoogle Scholar
  32. 32.
    Tomlin SL, Jenkins A, Leib WR, et al. Stereoselective effects of etomidate optical isomers on gamma-aminobutyric acid type-A receptors and animals. Anesthesiology 1998; 88:708–717.PubMedCrossRefGoogle Scholar
  33. 33.
    Abboud TK, Zhu J, Richardson M, et al. Intravenous propofol vs thiamylal-isoflurane for caesarean section, comparative maternal and neonatal effects. Acta Anaesthesiol Scand 1995; 39:205–209.PubMedCrossRefGoogle Scholar
  34. 34.
    Dundee JW, Zacharias M: Etomidate. In Dundee JW (Ed): Current topics in Anesthesia Series. 1. Intravenous Anesthetic Agents. London, Arnold, 1979, p 46.Google Scholar
  35. 35.
    Van Hamme MJ, Ghoneim MM, Ambre JJ. Pharmacokinetics of etomidate, a new intravenous anesthetic. Anesthesiology 1978; 49:274–277.PubMedCrossRefGoogle Scholar
  36. 36.
    Meuldermans WEG, Heykants JJP. The plasma protein binding and distribution of etomidate in dog, rat and human blood. Arch Int Pharmacodyn Ther 1976; 221:150–162.PubMedGoogle Scholar
  37. 37.
    Gooding JM, Weng J, Smith RA, et al. Cardiovascular and pulmonary responses following etomidate induction of anesthesia in patients with demonstrated cardiac disease. Anesth Analg 1979; 58:40–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Ebert TJ, Muzi M, Berens R, et al. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology 1992; 76:725–733.PubMedCrossRefGoogle Scholar
  39. 39.
    Cold GE, Eskeen V, Eriksen H, et al. CBF and CMRO2 during continuous etomidate infusion supplemented with N2O and fentanyl in patients with supratentorial cerebral tumor: a dose dependent study. Acta Anesthesiol Scand 1985; 29:490–494.CrossRefGoogle Scholar
  40. 40.
    Ebrahim EY, DeBoer GE, Luders H, et al. Effect of etomidate on electroencephalogram of patients with epilepsy. Anesth Analg 1986; 65:1004–1006.PubMedCrossRefGoogle Scholar
  41. 41.
    Ghoneim MM, Yamada T. Etomidate: a clinical and encephalographic comparison with thiopental. Anesth Analg 1977; 56:479–485.PubMedCrossRefGoogle Scholar
  42. 42.
    Allolio B, Dorr H, Struttmann R, et al. Effect of a single bolus dose of etomidate upon eight major corticosteroid hormones and plasma ACTH. Clin Endocrinol (Oxf) 1985; 22:281–286.CrossRefGoogle Scholar
  43. 43.
    Durrani Z, Winnie AP, Zsigmond EK, et al. Ketamine for intravenous regional anesthesia. Anesth Analg 1989; 68:328–332.PubMedCrossRefGoogle Scholar
  44. 44.
    Clements JA, Nimmo WS. The pharmacokinetics and analgesic effects of ketamine in man. Br J Anaesth 1981; 53:27–30.PubMedCrossRefGoogle Scholar
  45. 45.
    Geisslinger G, Hering W, Thomann P, et al. Pharmacokinetics and pharmacodynamics of ketamine enantiomers in surgical patients using a stereoselective analytical method. Br J Anaesth 1993: 70:666–671.PubMedCrossRefGoogle Scholar
  46. 46.
    Lundy PM, Lockwood PA, Thompson G, et al. Differential effects of ketamine isomers on neuronal and extraneuronal catecholamine uptake mechanisms. Anesthesiology 1986; 64:359–363.PubMedCrossRefGoogle Scholar
  47. 47.
    Reich DL, Silvay G. Ketamine: an update on the first twenty–five years of clinical experience. Can J Anaesth 1989; 36:186–197.PubMedCrossRefGoogle Scholar
  48. 48.
    Hoffman WE, Pelligrino D, Werner C, et al. Ketamine decrease plasma catecholamines and improves outcome from complete cerebral ischemia in rats. Anesthesiology 1992; 76:755–762.PubMedCrossRefGoogle Scholar
  49. 49.
    White PF, Ham J, Way WL, et al. Pharmacology of ketamine isomers in surgical patients. Anesthesiology 1980; 52:231–239.PubMedCrossRefGoogle Scholar
  50. 50.
    Hayashi Y, Maze M. Alpha 2-adrenoceptor agonists and anesthesia. Br J Anaesth 1993; 71:108–118.PubMedCrossRefGoogle Scholar
  51. 51.
    Morrison P, Etropolski M, Bachand R. Dexmedetomidine and sedation: a dose-ranging study. (W97–028 manuscript for publication).Google Scholar
  52. 52.
    Venn RM, Bradshaw CJ, Spencer R, et al. Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit. Anaesthesia 1999; 54:1136–1142.PubMedCrossRefGoogle Scholar
  53. 53.
    Precedex® (dexmedetomidine HCl) package insert. Lake Forest, IL: Hospira, Inc.; 2004 Apr.Google Scholar
  54. 54.
    Mason KP, Zgleszewski SE. Dexmedetomidine for pediatric sedation for computed tomography imaging studies. Anesth Analg 2006; 103:57–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Bouaziz H, Hewitt C, Eisenach JC. Subarachnoid neostigmine potentiation of alpha 2-adrenergic agonist analgesia. Dexmedetomidine versus Clonidine. Reg Anesth 1995; 20: 121–127.PubMedGoogle Scholar
  56. 56.
    Bloor BC, Ward DS, Belleville JP, et al. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology 1992; 77:1134–1142.PubMedCrossRefGoogle Scholar
  57. 57.
    Correa-Sales C, Rabin BC, Maze M: A hypnotic response to dexmedetomidine, an e-2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology 1992; 76:948–995.PubMedCrossRefGoogle Scholar
  58. 58.
    Khan Z, Ferguson C, Jones R: Alpha-2 and imidazoline receptor agonists: their pharmacology and therapeutic role. Anaesthesia 1999; 54:146–165.PubMedCrossRefGoogle Scholar
  59. 59.
    Precedex product label, Abbott Laboratories Inc.Google Scholar
  60. 60.
    Talke PO, Caldwell JE, Richardson CA, et al. The effects of dexmedetomidine on neuromuscular blockade in human volunteers. Anesth Analg 1999; 88:633–639.PubMedCrossRefGoogle Scholar
  61. 61.
    Belleville JP, Ward DS, Bloor BC, et al. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology 1992, 77:1125–1133.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Charles I. Yang
    • 1
  • Pravin Taneja
    • 2
  • Peter J. Davis
    • 3
  1. 1.University of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Children's Hospital of PittsburghPittsburghUSA
  3. 3.Anesthesiology and Critical Care MedicineChildren's Hospital of PittsburghPittsburghUSA

Personalised recommendations