Skip to main content

Spacetime Faces: High-Resolution Capture for~Modeling and Animation

  • Chapter
Data-Driven 3D Facial Animation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Blanz and T. Vetter. A morphable model for the synthesis of 3D faces. In SIGGRAPH Conference Proceedings, pages 187–194, 1999.

    Google Scholar 

  2. S.K. Nayar, M. Watanabe, and M. Noguchi. Real-time focus range sensor. IEEE Trans. on Pattern Analysis and Machine Intelligence, 18(12):1186–1198, 1996.

    Article  Google Scholar 

  3. O. Faugeras. Three-Dimensional Computer Vision. MIT Press, 1993.

    Google Scholar 

  4. M. Proesmans, L. Van Gool, and A. Oosterlinck. One-shot active 3D shape acquization. In Proc. Int. Conf. on Pattern Recognition, pages 336–340, 1996.

    Google Scholar 

  5. P.S. Huang, C.P. Zhang, and F.P. Chiang. High speed 3-d shape measurement based on digital fringe projection. Optical Engineering, 42(1):163–168, 2003.

    Article  Google Scholar 

  6. L. Zhang, B. Curless, and S.M. Seitz. Spacetime stereo: Shape recovery for dynamic scenes. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 367–374, 2003.

    Google Scholar 

  7. J. Davis, R. Ramamoorthi, and S. Rusinkiewicz. Spacetime stereo: A unifying framework for depth from triangulation. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 359–366, 2003.

    Google Scholar 

  8. I. Essa, S. Basu, T. Darrell, and A. Pentland. Modeling, tracking and interactive animation of faces and heads using input from video. In Proc. Computer Animation, pages 68–79. IEEE Computer Society, 1996.

    Google Scholar 

  9. F. Pighin, D.H. Salesin, and R. Szeliski. Resynthesizing facial animation through 3D model-based tracking. In Proc. Int. Conf. on Computer Vision, pages 143–150, 1999.

    Google Scholar 

  10. S. Basu, N. Oliver, and A. Pentland. 3D lip shapes from video: A combined physical-statistical model. Speech Communication, 26(1):131–148, 1998.

    Article  Google Scholar 

  11. D. DeCarlo and D. Metaxas. Adjusting shape parameters using model-based optical flow residuals. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(6):814–823, 2002.

    Article  Google Scholar 

  12. V. Blanz, C. Basso, T. Poggio, and T. Vetter. Reanimating faces in images and video. In Proc. EUROGRAPHICS, pages 641–650, 2003.

    Google Scholar 

  13. B. Guenter, C. Grimm, D. Wood, H. Malvar, and F. Pighin. Making faces. In SIGGRAPH Conference Proceedings, pages 55–66, 1998.

    Google Scholar 

  14. B. Allen, B. Curless, and Z. Popovic. The space of human body shapes: reconstruction and parameterization from range scans. In SIGGRAPH Conf. Proc., pages 587–594, 2003.

    Google Scholar 

  15. L. Torresani, D.B. Yang, E.J. Alexander, and C. Bregler. Tracking and modeling non-rigid objects with rank constraints. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 493–500, 2001.

    Google Scholar 

  16. M. Brand. Morphable 3D models from video. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 456–463, 2001.

    Google Scholar 

  17. F.I. Parke. Computer generated animation of faces. In Proc. ACM Annual Conference, pages 451–457. ACM Press, 1972.

    Google Scholar 

  18. P. Joshi, W.C. Tien, M. Desbrun, and F. Pighin. Learning controls for blend shape based realistic facial animation. In Proc. Eurographics/SIGGRAPH Symposium on Computer Animation, pages 187–192, 2003.

    Google Scholar 

  19. Q. Zhang, Z. Liu, B. Guo, and H. Shum. Geometry-driven photorealistic facial expression synthesis. In Proc. Eurographics/SIGGRAPH Symposium on Computer Animation, pages 177–186, 2003.

    Google Scholar 

  20. J. Chai, X. Jin, and J. Hodgins. Vision-based control of 3D facial animation. In Proc. Eurographics/SIGGRAPH Symposium on Computer Animation, pages 193–206, 2003.

    Google Scholar 

  21. C. Bregler, M. Covell, and M. Slaney. Video rewrite: Visual speech synthesis from video. In SIGGRAPH Conf. Proc., pages 353–360, 1997.

    Google Scholar 

  22. M. Brand. Voice puppetry. In SIGGRAPH Conf. Proc., pages 21–28, 1999.

    Google Scholar 

  23. T. Ezzat, G. Geiger, and T. Poggio. Trainable videorealistic speech animation. In SIGGRAPH Conf. Proc., pages 388–398, 2002.

    Google Scholar 

  24. Y. Li, T. Wang, and H.-Y. Shum. Motion texture: A two-level statistical model for character motion synthesis. In SIGGRAPH Conf. Proc., pages 465–472, 2002.

    Google Scholar 

  25. O. Arikan and D.A. Forsyth. Synthesizing constrained motions from examples. In SIGGRAPH Conf. Proc., pages 483–490, 2002.

    Google Scholar 

  26. L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In SIGGRAPH Conf. Proc., pages 473–482, 2002.

    Google Scholar 

  27. J. Lee, J. Chai, P.S.S. Reitsma, J.K. Hodgins, and N.S. Pollard. Interactive control of avatars animated with human motion data. In SIGGRAPH Conf. Proc., pages 491–500, 2002.

    Google Scholar 

  28. A. Schödl and I.A. Essa. Controlled animation of video sprites. In Proc. Eurographics/SIGGRAPH Symposium on Computer Animation, pages 121–127. ACM Press, 2002.

    Google Scholar 

  29. D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Computer Vision, 47(1):7–42, 2002.

    Article  MATH  Google Scholar 

  30. J. -Y. Bouguet. Camera Calibration Toolbox for Matlab. http://www.vision. caltech.edu/bouguetj/calib_doc/index.html, 2001.

    Google Scholar 

  31. T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive window: Theory and experiment. IEEE Trans. Pattern Analysis and Machine Intelligence, 16(9):920–932, 1994.

    Article  Google Scholar 

  32. S. Baker, R. Gross, and I. Matthews. Lucas-kanade 20 years on: A unifying framework: Part 3. Technical Report CMU-RI-TR-03-35, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, November 2003.

    Google Scholar 

  33. J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 1999.

    Google Scholar 

  34. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge University Press, 1993.

    Google Scholar 

  35. K. Pulli and M. Ginzton. Scanalyze. http://graphics.stanford.edu/software/scanalyze/, 2002.

    Google Scholar 

  36. B. Curless and M. Levoy. A volumetric method for building complex models from range images. In SIGGRAPH Conf. Proc., pages 303–312, 1996.

    Google Scholar 

  37. D.S. Broomhead and D. Lowe. Multivariable functional interpolation and adptive networks. Complex Systems, 2:321–355, 1988.

    MATH  MathSciNet  Google Scholar 

  38. F. Pighin, J. Hecker, D. Lischinski, D.H. Salesin, and R. Szeliski. Synthesizing realistic facial expressions from photographs. In SIGGRAPH Conf. Proc., pages 75–84, 1998.

    Google Scholar 

  39. M.J. Black and P. Anandan. Robust dense optical flow. In Proc. Int. Conf. on Computer Vision, pages 231–236, 1993.

    Google Scholar 

  40. S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade. Three-dimensional scene flow. In Proc. Int. Conf. on Computer Vision, pages 722–729, 1999.

    Google Scholar 

  41. T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape models—their training and application. Computer Vision and Image Understanding, 61(1):38–59, 1995.

    Google Scholar 

  42. A. Schödl, S. Szeliski, D.H. Salesin, and I. Essa. Video textures. In SIGGRAPH Conf. Proc., pages 489–498, 2000.

    Google Scholar 

  43. D.C. Kozen. The Design and Analysis of Algorithms. Springer-Verlag, 1992.

    Google Scholar 

  44. R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The office of the future: A unified approach to image-based modeling and spatially immersive displays. In SIGGRAPH Conf. Proc., pages 179–188, 1998.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zhang, L., Snavely, N., Curless, B., Seitz, S.M. (2008). Spacetime Faces: High-Resolution Capture for~Modeling and Animation. In: Deng, Z., Neumann, U. (eds) Data-Driven 3D Facial Animation. Springer, London. https://doi.org/10.1007/978-1-84628-907-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-907-1_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-906-4

  • Online ISBN: 978-1-84628-907-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics