Skip to main content

On Hybrid Model Predictive Control of Sewer Networks

  • Chapter

Abstract

Real-time control (RTC) of sewer-network systems plays an important role in meeting increasingly restrictive environmental regulations to reduce release of untreated wastewater to the environment. This chapter presents the application of hybrid model predictive control (HMPC) on sewer systems. It is known from the literature that HMPC has a computational complexity growing exponentially with the size of the system to be controlled. However, the average solution time of modern mixed integer program (MIP) solvers is often much better than the predicted worst-case-solution time. The problem is to know when the worst-case computational complexity appears. In addition to presenting the application, a secondary aim of the chapter is to discuss the limits of applicability due to real-time constraints on computation time when HMPC is applied on large-scale systems such as sewer networks. By using a case study of a portion of the Barcelona sewer system, it is demonstrated how the computational complexity of HMPC appears for certain state and disturbance combinations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (2003). ILOG CPLEX 9.1 User’s Manual.

    Google Scholar 

  2. Ames, A. and Sastry, S. (2005). Characterization of Zeno behavior in hybrid systems using homological methods. Proceedings of the IEEE American Control Conference, pp. 1160–1165. Portland, OR, USA.

    Google Scholar 

  3. Bemporad, A. (2004). Efficient conversion of mixed logical dynamical systems into an equivalent piecewise affine form. IEEE Transactions on Automatic Control 49(5), 832–838.

    Article  MathSciNet  Google Scholar 

  4. Bemporad, A. (2006). Hybrid Toolbox-User’s Guide.

    Google Scholar 

  5. Bemporad, A., Borrelli, F., and Morari, M. (2002). Hybrid Systems: Computation and Control, volume 228 of Lecture Notes of Computer Science, chapter On the optimal control law for linear discrete time hybrid systems, pp. 105–119. Springer, Berlin.

    Book  Google Scholar 

  6. Bemporad, A. and Giorgetti, N. (2006). Logic-based solution methods for optimal control of hybrid systems. IEEE Transactions on Automatic Control 51(6), 963–976.

    Article  MathSciNet  Google Scholar 

  7. Bemporad, A. and Morari, M. (1999). Control of systems integrating logic, dynamics, and constraints. Automatica 35(3), 407–427.

    Article  MATH  MathSciNet  Google Scholar 

  8. Bixby, R. (2002). Solving real-world linear programs: a decade and more of progress.

    Google Scholar 

  9. Bixby, R., Fenelon, M., Gu, Z., Rothberg, E., and Wunderling, R. (2000). MIP: Theory and practice — closing the gap.

    Google Scholar 

  10. Blondel, V. and Tsitsiklis, J. (2000). A survey of computational complexity results in systems and control. Automatica 36, 1249–1274.

    Article  MATH  MathSciNet  Google Scholar 

  11. Borrelli, F., Baotić, M., Bemporad, A., and Morari, M. (2005). Dynamic programming for constrained optimal control of discrete-time linear hybrid systems. Automatica 41, 1709–1721.

    Article  MATH  Google Scholar 

  12. Borrelli, F., Keviczky, T., Balas, G., Stewart, G., Fregene, K., and Godbole, D. (2005). Hybrid Systems: Computation and Control, volume 3414, chapter Hybrid Decentralized Control of Large Scale Systems, pp. 168–183. Springer Berlin / Heidelberg.

    Google Scholar 

  13. Branicky, M. and Zhang, G. (2000). Solving hybrid control problems: Level sets and behavioral programming. Proceedings of the IEEE American Control Conference.

    Google Scholar 

  14. Branicky, M. S., Borkar, V. S., and Mitter, S. K. (1998). A unified framework for hybrid control: Model and optimal control theory. IEEE Transactions on Automatic Control 43(1), 31–45.

    Article  MATH  MathSciNet  Google Scholar 

  15. Camacho, E. and Bordons, C. (2004). Model Predictive Control. Springer-Verlag, London, second edition.

    MATH  Google Scholar 

  16. Cembrano, G. and Quevedo, J. (1999). Optimization in Water Networks. Research Studies Press.

    Google Scholar 

  17. Cembrano, G., Quevedo, J., Salamero, M., Puig, V., Figueras, J., and Martí, J. (2004). Optimal control of urban drainage systems: a case study. Control Engineering Practice 12(1), 1–9.

    Article  Google Scholar 

  18. CLABSA, C. d. B. S. (2005). Homepage. http://www.clabsa.es/.

    Google Scholar 

  19. Duchesne, S., Mailhot, A., Dequidt, E., and Villeneuve, J. (2001). Mathematical modeling of sewers under surcharge for real time control of combined sewer overflows. Urban Water 3, 241–252.

    Article  Google Scholar 

  20. Earl, M. and D’Andrea, R. (2005). Phase transitions in the multi-vehicle task assignment problem. Proceedings of IMECE2005 2005 ASME International Mechanical Engineering Congress and Exposition.

    Google Scholar 

  21. Ermolin, Y. (1999). Mathematical modelling for optimized control of Moscow’s sewer network. Applied Mathematical Modelling 23, 543–556.

    Article  MATH  Google Scholar 

  22. Gelormino, M. and Ricker, N. (1994). Model-predictive control of a combined sewer system. International Journal of Control 59, 793–816.

    Article  MATH  Google Scholar 

  23. Geyer, T. (2005). Low Complexity Model Predictive Control in Power Electronics and Power Systems. Ph.D. thesis.

    Google Scholar 

  24. Geyer, T., Torrisi, F., and Morari, M. (2003). Efficient Mode Enumeration of Compositional Hybrid Models. Hybrid Systems: Computation and Control 2623, 216–232.

    Google Scholar 

  25. Heemels, W., De Schutter, B., and Bemporad, A. (2001). Equivalence of hybrid dynamical models. Automatica 37, 1085–1091.

    Article  MATH  Google Scholar 

  26. Heymann, M., Lin, F., Meyer, G., and Resmerita, S. (2002). Analysis of Zeno Behaviors in Hybrid Systems. Technical report, Technion-Computer Science Department.

    Google Scholar 

  27. Ingimundarson, A., Ocampo-Martinez, C., and Bemporad, A. (2007). Suboptimal model predictive control of hybrid systems using mode sequence constraints. Submitted to CDC 2007.

    Google Scholar 

  28. Lazar, M., Heemels, W., Weiland, S., and Bemporad, A. (2006). Stability of hybrid model predictive control. IEEE Transactions on Automatic Control 51(11), 1813–1818.

    Article  MathSciNet  Google Scholar 

  29. Lincoln, B. and Rantzer, A. (2001). Optimizing linear system switching. Proceedings of the 40th IEEE Conference on Decision and Control, pp. 2063–2068.

    Google Scholar 

  30. Ljung, L. (1999). System Identification—Theory for the User, Second Edition. Prentice Hall.

    Google Scholar 

  31. Lygeros, J., Tomlin, C., and Sastry, S. (1999). Controllers for reachability specifications for hybrid systems. Automatica 35(3), 349–370.

    Article  MATH  MathSciNet  Google Scholar 

  32. Maciejowski, J. (2002). Predictive Control with Constraints. Prentice Hall, Great Britain.

    Google Scholar 

  33. Marinaki, M. and Papageorgiou, M. (1998). Nonlinear optimal flow control for sewer networks. Proceedings of the IEEE American Control Conference, volume 2, pp. 1289–1293.

    Google Scholar 

  34. Marinaki, M. and Papageorgiou, M. (2005). Optimal Real-time Control of Sewer Networks. Springer.

    Google Scholar 

  35. Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. (2000). Constrained model predictive control: Stability and optimality. Automatica 36, 789–814.

    Article  MATH  MathSciNet  Google Scholar 

  36. Mays, L. (2004). Urban Stormwater Management Tools. McGrawHill.

    Google Scholar 

  37. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., and Troyansky, L. (1999). Determining computational complexity from characteristic “phase transitions”. Nature 400, 133–137.

    Article  MathSciNet  Google Scholar 

  38. Ocampo-Martinez, C., Puig, V., Quevedo, J., and Ingimundarson, A. (2005). Fault tolerant model predictive control applied on the Barcelona sewer network. Proceedings of IEEE Conference on Decision and Control (CDC) and European Control Conference (ECC).

    Google Scholar 

  39. Ocampo-Martínez, C., Ingimundarson, A., Puig, V., and Quevedo, J. (2007). Objective prioritization using lexicographic minimizers for MPC of sewer networks. IEEE Transactions on Control Systems Technology (Accepted for publication).

    Google Scholar 

  40. Papadimitriou, C. (1994). Computational Complexity. Addison-Wesley.

    Google Scholar 

  41. Pleau, M., Colas, H., Lavallée, P., Pelletier, G., and Bonin, R. (2005). Global optimal real-time control of the Quebec urban drainage system. Environmental Modelling & Software 20, 401–413.

    Google Scholar 

  42. Pleau, M., Methot, F., Lebrun, A., and Colas, A. (1996). Minimizing combined sewer overflow in real-time control applications. Water Quality Research Journal of Canada 31(4), 775–786.

    Google Scholar 

  43. Schilling, W., Anderson, B., Nyberg, U., Aspegren, H., Rauch, W., and Harremöes, P. (1996). Real-time control of wastewater systems. Journal of Hydraulic Resources 34(6), 785–797.

    Article  Google Scholar 

  44. Schütze, M., Butler, D., and Beck, B. (2002). Modelling, Simulation and Control of Urban Wastewater Systems. Springer.

    Google Scholar 

  45. Schütze, M., Campisanob, A., Colas, H., W. Schillingd, and Vanrolleghem, P. (2004). Real time control of urban wastewater systems: Where do we stand today? Journal of Hydrology 299, 335–348.

    Article  Google Scholar 

  46. Schütze, M., To, T., Jaumar, U., and Butler, D. (2002). Multi-objective control of urban wastewater systems. Proceedings of 15th IFAC World Congress.

    Google Scholar 

  47. Schutter, B. D. (1999). Optimal control of a class of linear hybrid systems with saturation. Proceedings of 38th IEEE Conference on Decision and Control, pp. 3978–3983.

    Google Scholar 

  48. Singh, V. (1988). Hydrologic systems: Rainfall-runoff modeling, volume I. Prentice-Hall, N.J.

    Google Scholar 

  49. Smith, K. and Austin, G. (2000). Nowcasting precipitation-A proposal for a way forward. Journal of Hydrology 239, 34–45.

    Article  Google Scholar 

  50. Tomlin, C., Lygeros, J., and Sastry, S. (2000). A game theoretic approach to controller design for hybrid systems. Proceedings of the IEEE, volume 88, pp. 949–970.

    Article  Google Scholar 

  51. Torrisi, F. and Bemporad, A. (2004). Hysdel-A tool for generating computational hybrid models for analysis and synthesis problems. IEEE Transactions on Control Systems Technology 12(2), 235–249.

    Article  MathSciNet  Google Scholar 

  52. Weyand, M. (2002). Real-time control in combined sewer systems in Germany: Some case studies. Urban Water 4, 347–354.

    Article  Google Scholar 

  53. Yuan, J., Tilford, K., Jiang, H., and Cluckie, I. (1999). Real-time urban drainage system modelling using weather radar rainfall data. Physics and Chemistry on the Earth (B) 24, 915–919.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ocampo-Martinez, C., Bemporad, A., Ingimundarson, A., Cayuela, V.P. (2007). On Hybrid Model Predictive Control of Sewer Networks. In: Sánchez Peña, R.S., Cayuela, V.P., Casín, J.Q. (eds) Identification and Control. Springer, London. https://doi.org/10.1007/978-1-84628-899-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-899-9_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-898-2

  • Online ISBN: 978-1-84628-899-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics