Skip to main content

Towards a Disease Ontology

  • Chapter

Part of the book series: Computational Biology ((COBO,volume 6))

Summary

The search for new mouse models of human disease has recently driven the funding of high throughput, large scale mutagenesis programmes throughout the world. As part of the attempt to deal with the data deluge resulting from these approaches together with existing hypothesis driven mouse genetics, there has been much discussion of the coding of mouse and human disease phenotypes in a way which lends itself to computer analysis, and the generation of new informatics tools. This chapter addresses current approaches to the development of a disease ontology or description framework, and critically assesses the requirements and potential solutions to the problems inherent in such an enterprise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Auwerx, P. Avner, R. Baldock, A. Ballabio, R. Balling, M. Barbacid, A. Berns,A. Bradley, S. Brown, P. Carmeliet, P. Chambon, R. Cox, D.Davidson, K. Davies,D. Duboule, J. Forejt, F. Granucci, N. Hastie, M. H. de Angelis, I. Jackson, D. Kioussis,G. Kollias, M. Lathrop, U. Lendahl, M. Malumbres, H. von Melchner, W. Muller,J. Partanen, P. Ricciardi-Castagnoli, P. Rigby, B. Rosen, N. Rosenthal, B. Skarnes, A.F.Stewart, J. Thornton, G. Tocchini-Valentini, E. Wagner, W. Wahli, and W. Wurst. The european dimension for the mouse genome mutagenesis program. Nat Genet, 36:925–7,2004.

    Article  Google Scholar 

  2. K. Baird, S. Davis, C.R. Antonescu, U.L. Harper, R.L. Walker, Y. Chen, A.A. Glatfelter,P.H. Duray P.S., and Meltzer. Gene expression profiling of human sarcomas: insights intosarcoma biology. Cancer Res, 65:9226–35, 2005.

    Google Scholar 

  3. J. Berman. Modern classification of neoplasms: reconciling differences between morphologicand molecular approaches. BMC Cancer, 5:100, 2005.

    Article  Google Scholar 

  4. M.D. Breyer, E. Bottinger, F.C. Brosius, T.M. Coffman, A. Fogo, R.C. Harris, C.W.Heilig, and K. Sharma. Diabetic nephropathy: of mice and men. Adv Chronic Kidney Dis, 12:128–45, 2005.

    Article  Google Scholar 

  5. S.D. Brown, P. Chambon, and M.H. de Angelis. EMPReSS: standardized phenotypescreens for functional annotation of the mouse genome. Nat Genet, 37:1155, 2005.

    Article  Google Scholar 

  6. C. Darwin. The variation of animals and plants under domestication., volume 2. JamesMurray, London, 1875.

    Google Scholar 

  7. P.W. Derksen, X. Liu, F. Saridin, H. van der Gulden, J. Zevenhoven, B. Evers, J.R. vanBeijnum, A.W. Griffioen, J. Vink, P. Krimpenfort, J.L. Peterse, R.D. Cardiff, A. Berns,and J. Jonkers. Somatic inactivation of E-cadherin and p53 in mice leads to metastaticlobular mammary carcinoma through induction of anoikis resistance and angiogenesis.Cancer Cell, 10:437–49, 2006.

    Article  Google Scholar 

  8. J. Eggenschwiler, T. Ludwig, P. Fisher, P.A. Leighton, S.M. Tilghman, and A. Efstratiadis. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of theBeckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev, 11:3128–42, 1997.

    Google Scholar 

  9. A.P. Feinberg. A genetic approach to cancer epigenetics. Cold Spring Harb Symp Quant Biol, 70:335–41, 2005.

    Article  Google Scholar 

  10. G.V. Gkoutos, E.C. Green, A.M. Mallon, J.M. Hancock, and D. Davidson. Buildingmouse phenotype ontologies. Pac Symp Biocomput, pages 178–89, 2004.

    Google Scholar 

  11. G.V. Gkoutos, E.C. Green, A.M. Mallon, J.M. Hancock, and D. Davidson. Using ontologiesto describe mouse phenotypes. Genome Biol, 6(R8), 2005.

    Google Scholar 

  12. E.C. Green, G.V. Gkoutos, A.M. Mallon, and J.M. Hancock. EMPReSS: European mousephenotyping resource for standardized screens. Bioinformatics, 21(12):2930–1, Apr 12 2005. PMID: 15827082.

    Google Scholar 

  13. A. Hamosh, A.F. Scott, J.S. Amberger, C.A. Bocchini, and V.A. McKusick. OnlineMendelian Inheritance in Man (OMIM), a knowledgebase of human genes and geneticdisorders. Nucleic Acids Res, 33:D514–7, 2005.

    Article  Google Scholar 

  14. A.T. Hattersley. Unlocking the secrets of the pancreatic beta cell: man and mouse providethe key. J Clin Invest, 114:314–6, 2004.

    Article  Google Scholar 

  15. J. Kelso, J. Visagie, G. Theiler, A. Christoffels, S. Bardien, D. Smedley, D. Otgaar,G. Greyling, C.V. Jongeneel, M.I. McCarthy, T. Hide, and W. Hide. eVOC: a controlled vocabulary for unifying gene expression data. Genome Res, 13:1222–30, 2003.

    Google Scholar 

  16. W.K. Lam-Tse, A. Lernmark, and H.A. Drexhage. Animal models of endocrine/organspecificautoimmune diseases: do they really help us to understand human autoimmunity? Springer Semin Immunopathol, 24:297–321, 2002.

    Article  Google Scholar 

  17. E. Melanitou. The autoimmune contrivance: genetics in the mouse model. Clin Immunol,117:195–206, 2005.

    Article  Google Scholar 

  18. R. Meuwissen, S.C. Linn, R.I. Linnoila, J. Zevenhoven, W.J. Mooi, and A. Berns. Inductionof small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in aconditional mouse model. Cancer Cell, 4:181–9, 2003.

    Article  Google Scholar 

  19. J.H. Nadeau. Modifier genes in mice and humans. Nat Rev Genet, 2:165–74, 2001.

    Article  Google Scholar 

  20. F. Neuhaus, P. Grenon, and B. Smith. A formal theory of substances, qualities, and universals.In A. Varzi and L. Vieu, editors, Formal Ontology in Information Systems (FOIS04),page 4959. IOS Press, 2004.

    Google Scholar 

  21. T.P. O’Connor and R.G. Crystal. Genetic medicines: treatment strategies for hereditarydisorders. Nat Rev Genet, 7:261–76, 2006.

    Article  Google Scholar 

  22. College of American Pathologists. Systematized nomenclature of medicine (SNOMED),1976.

    Google Scholar 

  23. World Health Organization. Manual for international Classification of diseases and health related Problems. Geneva, Switzerland, 10th edition, 1992.

    Google Scholar 

  24. P.N. Schofield, J.B. Bard, C. Booth, J. Boniver, V. Covelli, P. Delvenne, M. Ellender,W. Engstrom, W. Goessner, M. Gruenberger, H. Hoefler, J. Hopewell, M. Mancuso,C. Mothersill, C.S. Potten, L. Quintanilla-Fend, B. Rozell, H. Sariola, J.P. Sundberg, andA. Ward. Pathbase: a database of mutant mouse pathology. Nucleic Acids Res, 32:D512–5, 2004.

    Article  Google Scholar 

  25. B. Smith, A. Kumar, W. Ceusters, and C. Rosse. On carcinomas and other pathologicalentities. Comparative and Functional Genomics, 6:379–387, 2005.

    Article  Google Scholar 

  26. C.L. Smith, C.A. Goldsmith, and J.T. Eppig. The mammalian phenotype ontology asa tool for annotating, analyzing and comparing phenotypic information. Genome Biol,6(R7), 2005.

    Google Scholar 

  27. A.K. Srivastava, M.C. Durmowicz, A.J. Hartung, J. Hudson, L.V. Ouzts, D.M. Donovan,C.Y. Cui, and D. Schlessinger. Ectodysplasin-A1 is sufficient to rescue both hair growthand sweat glands in tabby mice. Hum Mol Genet, 10:2973–81, 2001.

    Article  Google Scholar 

  28. F.L. Sun, W.L. Dean, G. Kelsey, N.D. Allen, and W. Reik. Transactivation of Igf2 in amouse model of Beckwith-Wiedemann syndrome. Nature, 389:809–15, 1997.

    Article  Google Scholar 

  29. W.J. Swanger and J.M. Roberts. p57KIP2 targeted disruption and Beckwith-Wiedemannsyndrome: is the inhibitor just a contributor? Bioessays, 19:839–42, 1997.

    Article  Google Scholar 

  30. K. Takahashi, K. Nakayama, and Nakayama. Mice lacking a CDK inhibitor, p57Kip2,exhibit skeletal abnormalities and growth retardation. J Biochem (Tokyo), 127:73–83,2000.

    Google Scholar 

  31. L.K. Temple, R.S. McLeod, S. Gallinger, and J.G. Wright. Essays on science and society.defining disease in the genomics era. Science, 293:807–8, 2001.

    Article  Google Scholar 

Download references

Authors

Editor information

Albert Burger BSc, MSc, PhD Duncan Davidson BSc, PhD Richard Baldock BSc, PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Albert Burger, Duncan Davidson, Richard Baldock

About this chapter

Cite this chapter

Schofield, P.N., Rozell, B., Gkoutos, G.V. (2008). Towards a Disease Ontology. In: Burger, A., Davidson, D., Baldock, R. (eds) Anatomy Ontologies for Bioinformatics. Computational Biology, vol 6. Springer, London. https://doi.org/10.1007/978-1-84628-885-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-885-2_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-884-5

  • Online ISBN: 978-1-84628-885-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics