Skip to main content

Thyroid Embryology, Anatomy, and Physiology: A Review for the Surgeon

  • Chapter
  • First Online:
  • 1934 Accesses

Part of the book series: Springer Specialist Surgery Series ((SPECIALIST))

The thyroid gland, an obligate structure in all vertebrates, is essential for normal development and metabolism. As a response to the varying maladies of the thyroid, surgeons have devised various techniques to extirpate part or all of the gland. Recent advances include new tools such as the ultrasonic dissector (Harmonic scalpel) and the electrothermal bipolar sealing system (LigaSure) as well as the application of minimally invasive and endoscopic techniques. As surgical approaches have evolved, so has our understanding of the genetics of thyroid morphogenesis and the biochemistry of thyroid function. This review integrates recent work on thyroid physiology with our present knowledge of thyroid development and anatomical variations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. De felice M, di Lauro R. Thyroid development and its disorders: genetics and molecular mechanisms. Endocrine Rev. 2004; 25:722.

    Article  Google Scholar 

  2. Henry J-F. Applied embryology of the thyroid and parathyroid glands. In: Randolph GW editor. Surgery of the Thyroid and Parathyroid Glands. Philadelphia: Saunders; 2003. 12.

    Google Scholar 

  3. Weller G. Development of the thyroid, parathyroid and thymus glands in man. Contrib Embryol. 1933; 24:93.

    Google Scholar 

  4. Kaufman MH, Bard J. The thyroid. In: The anatomic basis of mouse development editor. San Diego: Academic Press; 1999. 165.

    Google Scholar 

  5. Larsen W. Development of head and neck. In: Human embryology editor. New York: Churchill Livingstone; 1997. 369.

    Google Scholar 

  6. Santisteban P. Development and anatomy of the hypothalamic-pituitary-thyroid axis. In: Braverman LE, Utiger RD editors. Werner and Ingbar’s The Thyroid: A fundamental and clinical text, 9th ed. Philadelphia: Lippincott-Raven; 2005. 7.

    Google Scholar 

  7. Wolfe HJ et al. Distribution of calcitonin containing cells in the normal and neonatal human thyroid gland: a correlation of morphology with peptide content. J Clin Endocrinol Metab. 1975;41:1076.

    Article  PubMed  CAS  Google Scholar 

  8. Plachov D, Chowdhury K, Walther C, Simon D, Guenet JL, Gruss P. Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development. 1990;110:643.

    PubMed  CAS  Google Scholar 

  9. Zannini M, Avantaggiato V, Biffali E, Arnone M, Sato K, Pischetola M, Taylor BA, Phillips SJ, Simeone A, Di Lauro R. TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation. EMBO J. 1997;16:3185.

    Article  PubMed  CAS  Google Scholar 

  10. Thomas PQ, Brown A, Beddington R. Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development. 1998;125:85.

    PubMed  CAS  Google Scholar 

  11. Meunier D, Aubin J, Jeannotte L. Perturbed thyroid morphology and transient hypothyroidism symptoms in Hoxa5 mutant mice. Dev Dyn. 2003;227:367.

    Article  PubMed  CAS  Google Scholar 

  12. Lazzaro D, Price M, De Felice M, Di Lauro R. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development. 1991;113:1093.

    PubMed  CAS  Google Scholar 

  13. Postiglione MP, Parlato R, Rodriguez-Mallon A, Rosica A, Mithbaokar P, Maresca M, Marians RC, Davies TF, Zannini MS, De Felice M, Di Lauro R. Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci USA. 2002;99:15462.

    Google Scholar 

  14. Castanet M, Polak M, Leger J. Familial forms of thyroid dysgenesis. Endocr Dev. 2007;10:15.

    Article  PubMed  Google Scholar 

  15. Kopp, P. Perspective: Genetic defects in the etiology of congenital hypothyroidism. Endocrinology. 2002;143:2019.

    Article  PubMed  CAS  Google Scholar 

  16. Fisher DA, Klein A. Thyroid development and disorders of thyroid function in the newborn. N Engl J Med. 1981;304:702.

    Article  Google Scholar 

  17. Leger J, Marinovic D, Garel C, Bonaiti-Pellie C, Polak M, Czernichow P. Thyroid developmental anomalies in first degree relatives of children with congenital hypothyroidism. J Clin Endocrinol Metab. 2002;87:575.

    Article  Google Scholar 

  18. Grueters A, Jenner A, Krude H. Long-term consequences of congenital hypothyroidism in the era of screening programmes. Best Pract Res Clin Endocrinol Metab. 2002;16:369.

    Google Scholar 

  19. Connelly JF, Coakley JC, Gold H, Francis I, Mathur KS, Rickards AL, Price GJ, Halliday JL, Wolfe R. Newborn screening for congenital hypothyroidism, Victoria, Australia, 1977–1997. I. The screening programme, demography, baseline perinatal data and diagnostic classification. J Pediatr Endocrinol Metab. 2001;14:1597.

    Google Scholar 

  20. Grueters A, Liesenkotter KP, Zapico M, Jenner A, Dutting C, Pfeiffer E, Lehmkuhl U. Results of the screening program for congenital hypothyroidism in Berlin (1978–1995). Exp Clin Endocrinol Diabetes. 1997;105(Suppl):28.

    Article  CAS  Google Scholar 

  21. Perry R, Heinrichs C, Bourdoux P, Khoury K, Szots F, Dussault JH, Vassart G, Van Vliet G. Discordance of monozygotic twins for thyroid dysgenesis: implications for screening and for molecular pathophysiology. J Clin Endocrinol Metab. 2002;87:4072.

    Article  Google Scholar 

  22. Castanet M, Polak M, Bonaiti-Pellie C, Lyonnet S, Czernichow P, Leger J. Nineteen years of national screening for congenital hypothyroidism: familial cases with thyroid dysgenesis suggest the involvement of genetic factors. J Clin Endocrinol Metab. 2002;86:2009.

    Google Scholar 

  23. Maiorana R, Carta A, Floriddia G, Leonardi D, Buscema M, Sava L, Calaciura F, Vigneri R. Thyroid hemiagenesis: prevalence in normal children and effect on thyroid function. J Clin Endocrinol Metab. 2003;88:1534.

    Article  Google Scholar 

  24. Batsakis JG, El-Naggar AK, Luna MA. Thyroid gland ectopias. Ann Otol Rhinol Laryngol. 1996;105:996.

    Google Scholar 

  25. Brandwein M, Som P, Urken M. Benign intratracheal thyroid: a possible cause for preoperative overstaging. Arch Otolaryngol Head Neck Surg. 1998;124:1266.

    Google Scholar 

  26. Feller KU, Mavros A, Gaertner HJ. Ectopic submandibular thyroid tissue with a coexisting active and normally located thyroid gland: case report and review of literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90:618.

    Article  Google Scholar 

  27. Casanova JB, Daly RC, Edwards BS, Tazelaar HD, Thompson GB. Intracardiac ectopic thyroid. Ann Thorac Surg. 2000;70:1694.

    Article  Google Scholar 

  28. Sackett WR, Reeve TS, Barraclough B, Delbridge LW. Thyrothymic thyroid rests: incidence and relationship to the thyroid gland. J Am Coll Surg. 2002;195:635.

    Article  Google Scholar 

  29. Takahashi T, Ishikura H, Kato H, Tanabe T, Yoshiki T. Ectopic thyroid follicles in the submucosa of the duodenum. Virchows Arch A Pathol Anat Histopathol. 1991;418:547.

    Article  Google Scholar 

  30. Harach HR. Ectopic thyroid tissue adjacent to the gallbladder. Histopathology. 1998;32:90.

    Article  Google Scholar 

  31. Ghanem N, Bley T, Altehoefer C, Hogerle S, Langer M. Ectopic thyroid gland in the porta hepatis and lingua. Thyroid. 2003;13:503.

    Article  Google Scholar 

  32. Foley D, Fallat M. Thyroglossal duct and other congenital midline cervical anomalies. Sem in Pediatric Surgery. 2006;15:70.

    Google Scholar 

  33. Bliss RD, Gauger PG, Delbridge LW. Surgeon's approach to the thyroid gland: surgical anatomy and the importance of technique. World J Surg. 2000;24:891.

    Google Scholar 

  34. Palazzo FF, Sywak MS, Sidhu SB, Delbridge LW. Safety and feasibility of thyroid lobectomy via a lateral 2.5-cm incision with a cohort comparison of the first 50 cases: evolution of a surgical approach. Langenbecks Arch Surg. 2005;390:230.

    Article  Google Scholar 

  35. Palazzo FF, Delbridge LW. Minimal-access/minimally invasive parathyroidectomy for primary hyperparathyroidism. Surg Clin North Am. 2004;84:717.

    Article  Google Scholar 

  36. Gosnell JE, Sackett WR, Sidhu S, Sywak M, Reeve TS, Delbridge LW. Minimal access thyroid surgery: technique and report of the first 25 cases. ANZ J Surg. 2004;74:330.

    Article  Google Scholar 

  37. Fewins J, Simpson CB, Miller FR. Complications of thyroid and parathyroid surgery. Otolaryngol Clin North Am. 2003;36:189.

    Article  Google Scholar 

  38. Miller FR. Surgical anatomy of the thyroid and parathyroid glands. Otolaryngol Clin North Am. 2003;36:1.

    Google Scholar 

  39. Toni R, Casa CD, Castorina S, Roti E, Ceda G, Valenti G. A meta-analysis of inferior thyroid artery variations in different human ethnic groups and their clinical implications. Ann Anat. 2005;187:371.

    Article  Google Scholar 

  40. Toni R, Della Casa C, Castorina S, Malaguti A, Mosca S, Roti E, Valenti G. A meta-analysis of superior thyroid artery variations in different human groups and their clinical implications. Ann Anat. 2004;186:255.

    Article  Google Scholar 

  41. Toni R, Della Casa C, Mosca S, Malaguti A, Castorina S, Roti E. Anthropological variations in the anatomy of the human thyroid arteries. Thyroid. 2003;13:183.

    Article  Google Scholar 

  42. Campos BA, Henriques PR. Relationship between the recurrent laryngeal nerve and the inferior thyroid artery: a study in corpses. Rev Hosp Clin Fac Med Sao Paulo. 2000;55:195.

    Google Scholar 

  43. Sultana SZ, Khan MK, Rahman H, Hossain A, Sultana S, Hasan N, Mannan S, Khalil M, Khalil M. Morphological study of recurrent laryngeal nerve in relation to thyroid gland. Mymensingh Med J. 2006;15:192.

    Google Scholar 

  44. Hisham AN, Lukman MR. Recurrent laryngeal nerve in thyroid surgery: a critical appraisal. ANZ J Surg. 2002;72:887.

    Google Scholar 

  45. Steurer M, Passler C, Denk DM, Schneider B, Niederle B, Bigenzahn W. Advantages of recurrent laryngeal nerve identification in thyroidectomy and parathyroidectomy and the importance of preoperative and postoperative laryngoscopic examination in more than 1000 nerves at risk. Laryngoscope. 2002;112:124.

    Article  Google Scholar 

  46. Beneragama T, Serpell JW. Extralaryngeal bifurcation of the recurrent laryngeal nerve: a common variation. ANZ J Surg. 2006;76:928.

    Article  Google Scholar 

  47. Yalcxin B. Anatomic configurations of the recurrent laryngeal nerve and inferior thyroid artery. Surgery. 2006;139:181.

    Article  Google Scholar 

  48. Gauger PG, Delbridge LW, Thompson NW, Crummer P, Reeve TS. Incidence and importance of the tubercle of Zuckerkandl in thyroid surgery. Eur J Surg. 2001;167:249.

    Google Scholar 

  49. Dixon E, McKinnon G, Pasieka, JL. Feasibility of sentinel lymph node biopsy and lymphatic mapping in nodular thyroid neoplasms. World J Surgery. 2000;24:1396.

    Article  Google Scholar 

  50. Delbridge LW. Total thyroidectomy: the evolution of surgical technique. ANZ J Surg. 2003;73:76.

    Article  Google Scholar 

  51. Pelizzo MR, Toniato A, Gemo G. Zuckerkandl's tuberculum: an arrow pointing to the recurrent laryngeal nerve (constant anatomical landmark) J Am Coll Surg. 1998;187:333.

    Article  Google Scholar 

  52. Ozlugedik S, Acar HI, Apaydin N, Tekdemir I, Elhan A, Comert A. Surgical anatomy of the external branch of the superior laryngeal nerve. Clin Anat. 2007;20:387.

    Article  Google Scholar 

  53. Cernea CR, Ferraz AR, Nishio S, Dutra A Jr, Hojaij FC, dos Santos LR. Surgical anatomy of the external branch of the superior laryngeal nerve. Head Neck. 1992;14:380.

    Article  Google Scholar 

  54. Cernea CR, Ferraz AR, Furlani J, Monteiro S, Nishio S, Hojaij FC, Dutra Junior A, Marques LA, Pontes PA, Bevilacqua RG. Identification of the external branch of the superior laryngeal nerve during thyroidectomy. Am J Surg. 1992;164:634.

    Article  Google Scholar 

  55. Cernea CR, Nishio S, Hojaij FC. Identification of the external branch of the superior laryngeal nerve (EBSLN) in large goiters. Am J Otolaryngol. 1995;16:307.

    Article  Google Scholar 

  56. Friedman M, LoSavio P, Ibrahim H. Superior laryngeal nerve identification and preservation in thyroidectomy. Arch Otolaryngol Head Neck Surg. 2002;128:296.

    Google Scholar 

  57. Hurtado-Lopez LM, Zaldivar-Ramirez FR. Risk of injury to the external branch of the superior laryngeal nerve in thyroidectomy. Laryngoscope. 2002;112:626.

    Article  Google Scholar 

  58. Kierner AC, Aigner M, Burian M. The external branch of the superior laryngeal nerve: its topographical anatomy as related to surgery of the neck. Arch Otolaryngol Head Neck Surg. 1998;124:301.

    Google Scholar 

  59. Phitayakorn R, McHenry CR. Incidence and location of ectopic abnormal parathyroid glands. Am J Surg. 2006;191:418.

    Article  Google Scholar 

  60. Akerstrom G, Malmaeus J, Bergstrom R. Surgical anatomy of human parathyroid glands. Surgery. 1984;95:14.

    Google Scholar 

  61. Wang CA. Surgery of the parathyroid glands. Adv Surg. 1971;5:109.

    Google Scholar 

  62. Wang CA. The anatomic basis of parathyroid surgery. Ann Surg. 1976;183:271.

    Article  Google Scholar 

  63. Dobson J. he iodine factor in health and evolution. Geographical Review. 1998;88:1.

    Article  Google Scholar 

  64. Clifton-Bligh R, Delbridge L. Thyroid physiology. In: Clark, Duh, Kebebew (eds.), Textbook of Endocrine Surgery, 2nd ed. Elsevier Saunders, 2005:3.

    Google Scholar 

  65. Hurley JR. Thyroid physiology and thyroid function testing. In: Randolph GW (ed.), Surgery of the Thyroid and Parathyroid Glands. Philadelphia: Saunders, 2003:23.

    Google Scholar 

  66. Heuer H. The importance of thyroid hormone transporters for brain development and function. Best Pract Res Clin Endocrinol Metab. 2007;21:265.

    Article  Google Scholar 

  67. Pniewska-Siark B, Jeziorowska A, Bobeff I, Lewinski A. Analysis of physical and mental development of children with aplasia, hypoplasia and ectopy of the thyroid gland. Endocr Regul. 2006;40:7.

    Google Scholar 

  68. Boyages SC. Iodine deficiency disorders J Clin Endocrinol Metab. 1993;77:587.

    Article  Google Scholar 

  69. Carrasco N. Thyroid iodine transport. In: Braverman LE, Utiger RD editors. Werner and Ingbar’s The Thyroid: A fundamental and clinical text, 9th ed. Philadelphia: Lippincott-Raven; 2005. 38.

    Google Scholar 

  70. Dai G, Levy O, Carrasco N. Cloning and Characterization of the thyroid iodide transporter Nature. 1996;379:458.

    Google Scholar 

  71. Smanik PA, Liu Q, Furminger TL, et al. Cloning of the human sodium-iodide symporter. Biochem Biophys Res Commun. 1996;226:339.

    Article  Google Scholar 

  72. Fujiwara H, Tatsumi K-I, Miki K, et al. Congenital hypothyroidism caused by a mutation in the Na+/I- symporter. Nat Genet. 1997;16:124.

    Article  Google Scholar 

  73. Ferreira AC, Lima LP, Araujo RL, Muller G, Rocha RP, Rosenthal D, Carvalho DP. Rapid regulation of thyroid sodium-iodide symporter activity by thyrotrophin and iodine. J Endocrinol. 2005;184:69.

    Article  Google Scholar 

  74. Kopp P. Thyroid hormone synthesis. In: Braverman LE, Utiger RD editors. Werner and Ingbar’s The Thyroid: A fundamental and clinical text, 9th ed. Philadelphia: Lippincott-Raven; 2005. 52.

    Google Scholar 

  75. Wolff J, Chaikoff IL. Plasma inorganic iodide as a homeostatic regulator of thyroid function. J Biol Chem. 1948;174:555.

    Google Scholar 

  76. McLachlan SM, Rapoport B. The molecular biology of thyroid peroxidase: cloning, expression and role as autoantigen in autoimmune thyroid disease. Endocr Rev. 1992;13:192.

    Google Scholar 

  77. Benvenga S. Thyroid hormone transport proteins and the physiology of hormone binding. In: Braverman LE, Utiger RD editors., Werner and Ingbar’s The Thyroid: A fundamental and clinical text, 9th ed. Philadelphia: Lippincott-Raven, 2005:97.

    Google Scholar 

  78. Schussler GC. The thyroxine-binding proteins. Thyroid. 2000;10:141.

    Article  Google Scholar 

  79. Tata JR, Widnell CC. Ribonucleic acid synthesis during the early action of thyroid hormones. Biochem J. 1966;98:604.

    Google Scholar 

  80. Yen P. Genomic and nongenomic actions of thyroid hormones. In: Braverman LE, Utiger RD editors. Werner and Ingbar’s The Thyroid: A fundamental and clinical text, 9th ed. Philadelphia: Lippincott-Raven; 2005. 135.

    Google Scholar 

  81. Oetting A, Yen PM. New insights into thyroid hormone action. Best Pract Res Clin Endocrinol Metab. 2007;21:193.

    Article  Google Scholar 

  82. Yen PM. Physiological and molecular basis of TH action. Physiol Rev. 2001;81:1097.

    Google Scholar 

  83. Oppenheimer J, Schwartz H, Mariash C, et al. Advances in our understanding of TH action at the cellular level. Endocr Rev. 1987;8:288.

    Article  Google Scholar 

  84. Friesema EC, Jansen J, Visser TJ. Thyroid hormone transporters. Biochem Soc Trans. 2005;33:228.

    Google Scholar 

  85. Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest. 2006;116:2571.

    Article  Google Scholar 

  86. Kohrle J. Thyroid hormone transporters in health and disease: advances in thyroid hormone deiodination. Best Pract Res Clin Endocrinol Metab. 2007;21:173.

    Article  Google Scholar 

  87. Faber J, Siersbaek-Nielsen K. Serum free 3,5,3′-triiodothyronine (T3) in non-thyroidal somatic illness, as measured by ultrafiltration and immunoextraction. Clin Chim Acta. 1996;256:115.

    Article  Google Scholar 

  88. Chopra, IJ. Simultaneous measurement of free thyroxine and free 3,5,3′-triiodothyronine in undiluted serum by direct equilibrium dialysis/radioimmunoassay: evidence that free triiodothyronine and free thyroxine are normal in many patients with the low triiodothyronine syndrome. Thyroid. 1998;8:249.

    Article  Google Scholar 

  89. Morkin E. Regulation of myosin heavy chain genes in the heart. Circulation. 1993;87:1451.

    Google Scholar 

  90. Hollenberg AN. Regulation of thyrotropin secretion. In: Braverman LE, Utiger RD editors. Werner and Ingbar’s The Thyroid: A fundamental and clinical text, 9th ed. Philadelphia: Lippincott-Raven, 2005:197.

    Google Scholar 

  91. Findlay DM, Sexton PM. Calcitonin. Growth Factors. 2004;22:217.

    Google Scholar 

  92. Guyetant S, Blechet C, Saint-Andre JP. C-cell hyperplasia. Ann Endocrinol (Paris) 2006;67:190.

    Google Scholar 

  93. Ball DW. Medullary thyroid cancer: therapeutic targets and molecular markers. Curr Opin Oncol. 2007;19:18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

McMullen, T.P., Delbridge, L.W. (2009). Thyroid Embryology, Anatomy, and Physiology: A Review for the Surgeon. In: Hubbard, J., Inabnet, W., Lo, CY. (eds) Endocrine Surgery. Springer Specialist Surgery Series. Springer, London. https://doi.org/10.1007/978-1-84628-881-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-881-4_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-880-7

  • Online ISBN: 978-1-84628-881-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics