Skip to main content

Shape-Preserving Rational Interpolation for Planar Curves

  • Chapter
Interactive Curve Modeling
  • 782 Accesses

Data visualization is an important issue in information visualization. In specific applications, data may have different shapes when occurring in scientific phenomena or in some other perspective. A simple application may be when data is globally monotone or convex. Representing data in a visually meaningful and computationally efficient way is a significant topic to consider. This chapter deals with such situations using the piecewise rational cubic interpolant of Section 3.3. For simplicity, the shape parameters introduced in each interval have been constrained to solve the problem of shape-preserving interpolation for planer curves. Scalar curves are also considered as a special case, but they are discussed in detail in Chapters 7 and 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McAllister, D.F. and Roulier, J.A. (1981), An algorithm for computing a shape-preserving osculatory quadratic spline, ACM Trans Math Software 7, 331-347.

    Article  MATH  MathSciNet  Google Scholar 

  2. Passow, E., and Roulier, J.A. (1977), Monotone and convex spline interpolation. SIAM J Num Anal 14, 904-909.

    Article  MATH  MathSciNet  Google Scholar 

  3. Fritsch, F.N., and Carlson, R.E. (1980), Monotone piecewise cubic interpolation, SIAM J Num Anal 17, 238-246.

    Article  MATH  MathSciNet  Google Scholar 

  4. Gregory, J.A. (1986), Shape-preserving spline interpolation, Computer-Aided Design, 18(1),53-57.

    Article  Google Scholar 

  5. Fritsch, F.N., and Butland, J. (1984), A method for constructing local monotone piece- wise cubic interpolants, SIAM J Sc Stat Comput 5, 303-304.

    MathSciNet  Google Scholar 

  6. Schumaker, L.L. (1983), On shape-preserving quadratic spline interpolation, SIAM J Num Anal 20, 854-864.

    Article  MATH  MathSciNet  Google Scholar 

  7. Brodlie, K.W., and Butt, S. (1991), Preserving convexity using piecewise cubic inter- polation, Comput Graphics 15, 15-23.

    Article  Google Scholar 

  8. Butt, S., and Brodlie, K.W. (1993), Preserving positivity using piecewise cubic inter- polation, Comput Graphics 17(1), 55-64.

    Article  Google Scholar 

  9. Sarfraz, M. (1992), Convexity preserving piecewise rational interpolation for planar curves, Bull Korean Math Soc 29(2), 193-200.

    MATH  MathSciNet  Google Scholar 

  10. Sarfraz, M. (1997), Preserving monotone shape of the data using piecewise rational cubic functions, Comput Graphics 21(1), 5-14.

    Article  Google Scholar 

  11. Brodlie, K.W. (1985), Methods for drawing curves. In: Fundamental Algorithm for Computer Graphics, ed. R.A. Earnshaw, Springer-Verlag, Berlin, pp. 303-323.

    Google Scholar 

  12. DeVore, A., and Yan, Z. (1986), Error analysis for piecewise quadratic curve fitting algorithms, Comp Aided Geom Design 3, 205-215.

    Article  MATH  MathSciNet  Google Scholar 

  13. Greiner, K. (1991), A survey on univariate data interpolation and approximation by splines of given shape, Math Comp Mod 15, 97-106.

    Article  MATH  MathSciNet  Google Scholar 

  14. Constantini, P. (1997), Aboundary-valued shape preserving interpolating splines, ACM Transactions on Mathematical Software, 23(2), 229-251.

    Article  Google Scholar 

  15. Lahtinen, A. (1996), Monotone interpolation with application to estimation of taper curves, Ann Numer Math 3, 151-161.

    MATH  MathSciNet  Google Scholar 

  16. Sarfraz, M. (1992), Interpolatory rational cubic spline with biased, point and interval tension, ComputGraphics, 16(4), 427-430.

    Google Scholar 

  17. Moreton, H.P., and Sequin, C.H. (1995), Minimum Variation Curves and Surfaces for Computer-Aided Geometric Design, Designing Fair Curves and Surfaces, Nick Sapidis, ed., Proceedings of SIAM’94 Conference, pp, 123-159.

    Google Scholar 

  18. Sarfraz, M., Butt, S., and Hussain, M. Z. (2001), Visualization of shaped data by a rational cubic spline interpolation, Int J Comput Graphics, Elsevier Science, 25(5), 833-845.

    Google Scholar 

  19. Sarfraz, M. (2000), A rational cubic spline for the visualization of monotonic data, Comput Graphics 24(4), 509-516.

    Article  Google Scholar 

  20. Sarfraz, M., and Hussain, M.Z. (2006), Data visualization using rational spline inter-polation, Int J Computational Appl Math, Elsevier Science, 189(1-2), 513-525.

    MATH  MathSciNet  Google Scholar 

  21. Sarfraz, M., Hussain, M.Z., and Chaudhry, F.S. (2005), Shape-preserving cubic spline for data visualization, Int J Comput Graphics CAD/CAM, International Scientific, 1(6), 185-194.

    Google Scholar 

  22. Sarfraz, M. (2002), Visualization of positive and convex data by a rational cubic spline, Int J Information Sci, Elsevier Science, 146(1-4), 239-254.

    MATH  MathSciNet  Google Scholar 

  23. Sarfraz, M. (2002), Modelling for the visualization of monotone data, Int J Modelling Simulation, ACTA Press, 22(3), 176-185.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2008). Shape-Preserving Rational Interpolation for Planar Curves. In: Interactive Curve Modeling. Springer, London. https://doi.org/10.1007/978-1-84628-871-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-871-5_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-870-8

  • Online ISBN: 978-1-84628-871-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics