Skip to main content

Developmental Aspects of the Electrophysiology of the Heart: Function Follows Form

  • Chapter
Electrical Diseases of the Heart

Abstract

The cardiovascular system is the first organ system to form and function in the developing embryo. The function of the system is to continuously pump blood throughout the body for an entire lifetime. The adult heart, as the main pump in this system, performs roughly two thousand million cycles (2.3 × 109) in a typical lifetime. This continuous cycle is necessary to supply the whole body and all of its organs with oxygen and nutrients. Realization of this requires that the heart relaxes so that its chambers, the atria and ventricles, can fill with blood and then contract to propel the blood throughout the body. To achieve this, an intricate and complex organ developed, containing multiple chambers, nodes, valves, and electrical and force-producing components. In contrast, in primitive chordates and early vertebrate embryos the heart merely constitutes a myocardial mantle enfolding a ventral aorta, in which the blood is propelled by peristaltic contractions. The cardiomyocytes of such a primitive heart can be considered as “nodal” cells as they display automaticity and are poorly coupled, resulting in slow propagation of the depolarizing impulse and a matching peristaltic contraction. Eventually, the development of polarity, specifically, dominant pacemaker activity at the intake of the heart, led to the evolution of a one-way pump. Although dominant pacemaker activity implies development of sinus node function, only in mammals does a morphologically distinct node actually develop.1 The addition of highly localized, fast conducting cardiac chambers to the straight heart tube is an evolutionary novel event, and resulted in the four-chambered hearts of birds and mammals with synchronous contraction for a dual circulation. Interestingly, concomitant with the formation of chambers, an adult type of electrocardiogram (ECG) can already be monitored in the embryo (Figure 2-1).2 Thus, cardiac design, e.g., the positioning of the atrial and ventricular chambers within the straight heart tube, rather than the invention of nodes, principally explains the coordinated activation of the heart reflected in the ECG. To address the question why some areas of the embryonic heart tube do not participate in the formation of atrial or ventricular working myocardium and mature in a nodal direction, we suggest that the chamber-specific program of gene expression is specifically repressed by T-box factors and by other transcriptional repressors. Consequently, aberrant expression of these factors might be at the basis of ectopic automaticity and congenital malformations of the cardiac conduction system in the formed human heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canale ED, Campbell GR, Smolich JJ, et al. Cardiac Muscle. Berlin: Springer-Verlag, 1986:318.

    Google Scholar 

  2. Seidl W, Schulze M, Steding G, et al. A few remarks on the physiology of the chick embryo heart (Gallus gallus). Folia Morphol (Praha) 1981;29:237–242.

    CAS  Google Scholar 

  3. Davies MJ, Anderson RH, Becker AE. Embryology of the conduction tissues. In: Davies MJ, Becker AE, Eds. The Conduction System of the Heart. London: Butterworth, 1983:81–94.

    Google Scholar 

  4. Paff GH, Boucek RJ, Harrell TC. Observations on the development of the electrocardiogram. Anat Rec 1968;160:575–582.

    Article  PubMed  CAS  Google Scholar 

  5. Rosenthal N, Xavier-Neto J. From the bottom of the heart: Anteroposterior decisions in cardiac muscle differentiation. Curr Opin Cell Biol 2000;12:742–746.

    Article  PubMed  CAS  Google Scholar 

  6. Randl DJ, Davie PS. The hearts of urochordates and cephalochordates. In: Bourne GH, Ed. Hearts and Heart-like Organs. New York: Academic Press, 1980:41–59.

    Google Scholar 

  7. Anderson M. Electrophysiological studies on initiation and reversal of the heart beat in Ciona intestinalis. J Exp Biol 1968;49:363–385.

    PubMed  CAS  Google Scholar 

  8. Kriebel ME. Wave front analyses of impulses in tunicate heart. Am J Physiol 1970;218:1194–1200.

    PubMed  CAS  Google Scholar 

  9. Moller PC, Philpott CW. The circulatory system of Amphioxus (Branchiostoma floridae). I. Morphology of the major vessels of the pharyngeal area. J Morphol 1973;139:389–406.

    Article  PubMed  CAS  Google Scholar 

  10. von Skramlik E. Über den kreislauf bei den niersten chordaten. Erg Biol 1938;15:166–309.

    Google Scholar 

  11. Moorman AF, Christoffels VM. Cardiac chamber formation: Development, genes, and evolution. Physiol Rev 2003;83:1223–1267.

    PubMed  CAS  Google Scholar 

  12. de Jong F, Opthof T, Wilde AA, et al. Persisting zones of slow impulse conduction in developing chicken hearts. Circ Res 1992;71:240–250.

    PubMed  Google Scholar 

  13. Timmermans C, Rodriguez LM, Medeiros A, et al. Radiofrequency catheter ablation of idiopathic ventricular tachycardia originating in the main stem of the pulmonary artery. J Cardiovasc Electrophysiol 2002;13:281–284.

    Article  PubMed  Google Scholar 

  14. Christoffels VM, Habets PE, Franco D, et al. Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol 2000;223: 266–278.

    Article  PubMed  CAS  Google Scholar 

  15. Van Kempen MJ, Vermeulen JL, Moorman AF, et al. Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart. Cardiovasc Res 1996;32:886–900.

    PubMed  Google Scholar 

  16. Palmer S, Groves N, Schindeler A, et al. The small muscle-specific protein Csl modifies cell shape and promotes myocyte fusion in an insulin-like growth factor 1-dependent manner. J Cell Biol 2001;153: 985–998.

    Article  PubMed  CAS  Google Scholar 

  17. Houweling AC, Somi S, Van Den Hoff MJ, et al. Developmental pattern of ANF gene expression reveals a strict localization of cardiac chamber formation in chicken. Anat Rec 2002;266:93–102.

    Article  PubMed  CAS  Google Scholar 

  18. Christoffels VM, Burch JB, Moorman AF. Architectural plan for the heart: Early patterning and delineation of the chambers and the nodes. Trends Cardiovasc Med 2004;14:301–307.

    Article  PubMed  Google Scholar 

  19. Thompson RP, Lindroth JR, Wong YMM. Regional differences in DNA-synthetic activity in the preseptation of myocardium of the chick. In: Clark EB, Takao A, Eds. Developmental Cardiology: Morphogenesis and Function. New York: Futura Publishing, 1990:219–234.

    Google Scholar 

  20. Thompson RP, Kanai T, Germroth PG. Organization and function of early specialized myocardium. In: Clark EB, Markwald RR, Takao A, Eds. Developmental Mechanisms of Heart Disease. New York: Futura Publishing, 1995:269–279.

    Google Scholar 

  21. Soufan AT, van den Berg G, Ruijter JM, et al. A regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation. Circ Res 2006;99:545–552.

    Article  PubMed  CAS  Google Scholar 

  22. Davis DL, Edwards AV, Juraszek AL, et al. A GATA-6 gene heart-region-specific enhancer provides a novel means to mark and probe a discrete component of the mouse cardiac conduction system. Mech Dev 2001;108:105–119.

    Article  PubMed  CAS  Google Scholar 

  23. Cheng G, Litchenberg WH, Cole GJ, et al. Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 1999;126:5041–5049.

    PubMed  CAS  Google Scholar 

  24. Habets PE, Moorman AF, Clout DE, et al. Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: Implications for cardiac chamber formation. Genes Dev 2002;16: 1234–1246.

    Article  PubMed  CAS  Google Scholar 

  25. Habets PE, Moorman AF, Christoffels VM. Regulatory modules in the developing heart. Cardiovasc Res 2003;58:246–263.

    Article  PubMed  CAS  Google Scholar 

  26. Papaioannou VE. T-box genes in development: From hydra to humans. Int Rev Cytol 2001;207: 1–70.

    Article  PubMed  CAS  Google Scholar 

  27. Harrelson Z, Kelly RG, Goldin SN, et al. Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development 2004;131:5041–5052.

    Article  PubMed  CAS  Google Scholar 

  28. Hoogaars WM, Tessari A, Moorman AF, et al. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 2004;62:489–499.

    Article  PubMed  CAS  Google Scholar 

  29. Christoffels VM, Hoogaars WM, Tessari A, et al. T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn 2004;229:763–770.

    Article  PubMed  CAS  Google Scholar 

  30. Sinha S, Abraham S, Gronostajski RM, et al. Differential DNA binding and transcription modulation by three T-box proteins, T, TBX1 and TBX2. Gene 2000;258:15–29.

    Article  PubMed  CAS  Google Scholar 

  31. He M, Wen L, Campbell CE, et al. Transcription repression by Xenopus ET and its human ortholog TBX3, a gene involved in ulnar-mammary syndrome. Proc Natl Acad Sci USA 1999;96:10212–10217.

    Article  PubMed  CAS  Google Scholar 

  32. Carreira S, Dexter TJ, Yavuzer U, et al. Brachyury-related transcription factor Tbx2 and repression of the melanocyte-specific TRP-1 promoter. Mol Cell Biol 1998;18:5099–5108.

    PubMed  CAS  Google Scholar 

  33. Carlson H, Ota S, Campbell CE, et al. A dominant repression domain in Tbx3 mediates transcriptional repression and cell immortalization: Relevance to mutations in Tbx3 that cause ulnarmammary syndrome. Hum Mol Genet 2001;10: 2403–2413.

    Article  PubMed  CAS  Google Scholar 

  34. Lingbeek ME, Jacobs JJ, van Lohuizen M. The T-box repressors TBX2 and TBX3 specifically regulate the tumor suppressor gene p14ARF via a variant T-site in the initiator. J Biol Chem 2002;277:26120–26127.

    Article  PubMed  CAS  Google Scholar 

  35. Niederreither K, Vermot J, Messaddeq N, et al. Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse. Development 2001;128:1019–1031.

    PubMed  CAS  Google Scholar 

  36. Bruneau BG, Logan M, Davis N, et al. Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol 1999;211: 100–108.

    Article  PubMed  CAS  Google Scholar 

  37. Takeuchi JK, Ohgi M, Koshiba-Takeuchi K, et al. Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development 2003;130:5953–5964.

    Article  PubMed  CAS  Google Scholar 

  38. Costantini DL, Arruda EP, Agarwal P, et al. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 2005;123:347–358.

    Article  PubMed  CAS  Google Scholar 

  39. Shimizu W. The Brugada syndrome-an update. Intern Med 2005;44:1224–1231.

    Article  PubMed  Google Scholar 

  40. Kies P, Bootsma M, Bax J, et al. Arrhythmogenic rightventriculardysplasia/cardiomyopathy: Screening, diagnosis, and treatment. Heart Rhythm 2006; 3:225–234.

    Article  PubMed  Google Scholar 

  41. Mori AD, Zhu Y, Vahora I, et al. Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Dev Biol 2006;297:566–586.

    Article  PubMed  CAS  Google Scholar 

  42. Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 1997;15:30–35.

    Article  PubMed  CAS  Google Scholar 

  43. Pizard A, Burgon PG, Paul DL, et al. Connexin 40, a target of transcription factor Tbx5, patterns wrist, digits, and sternum. Mol Cell Biol 2005;25:5073–5083.

    Article  PubMed  CAS  Google Scholar 

  44. Bamshad M, Lin RC, Law DJ, et al. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet 1997;16:311–315.

    Article  PubMed  CAS  Google Scholar 

  45. Meneghini V, Odent S, Platonova N, et al. Novel TBX3 mutation data in families with ulnar-mammary syndrome indicate a genotype-phenotype relationship: Mutations that do not disrupt the T-domain are associated with less severe limb defects. Eur J Med Genet 2006;49:151–158.

    Article  PubMed  Google Scholar 

  46. Garg V, Kathiriya IS, Barnes R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 2003;424: 443–447.

    Article  PubMed  CAS  Google Scholar 

  47. Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 1998;281:108–111.

    Article  PubMed  CAS  Google Scholar 

  48. Merscher S, Funke B, Epstein JA, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorgesyndrome.Cell2001;104:619–629.

    Article  PubMed  CAS  Google Scholar 

  49. Nowotschin S, Liao J, Gage PJ, et al. Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development 2006;133:1565–1573.

    Article  PubMed  CAS  Google Scholar 

  50. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 2001;27:286–291.

    Article  PubMed  CAS  Google Scholar 

  51. Moorman AF, de Jong F, Denyn MM, et al. Development of the cardiac conduction system. Circ Res 1998;82:629–644.

    PubMed  CAS  Google Scholar 

  52. Gourdie RG, Mima T, Thompson RP, et al. Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development 1995;121:1423–1431.

    PubMed  CAS  Google Scholar 

  53. Myers DC, Fishman GI. Molecular and functional maturation of the murine cardiac conduction system. Trends Cardiovasc Med 2003;13:289–295.

    Article  PubMed  CAS  Google Scholar 

  54. Garratt AN, Ozcelik C, Birchmeier C. ErbB2 pathways in heart and neural diseases. Trends Cardiovasc Med 2003;13:80–86.

    Article  PubMed  CAS  Google Scholar 

  55. Rentschler S, Zander J, Meyers K, et al. Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc Natl Acad Sci USA 2002;99: 10464–10469.

    Article  PubMed  CAS  Google Scholar 

  56. Rentschler S, Vaidya DM, Tamaddon H, et al. Visualization and functional characterization of the developing murine cardiac conduction system. Development 2001;128:1785–1792.

    PubMed  CAS  Google Scholar 

  57. van Kempen MJ, Fromaget C, Gros D, et al. Spatial distribution of connexin43, the major cardiac gap junction protein, in the developing and adult rat heart. Circ Res 1991;68:1638–1651.

    PubMed  Google Scholar 

  58. Moorman AF, Schumacher CA, de Boer PA, et al. Presence of functional sarcoplasmic reticulum in the developing heart and its confinement to chamber myocardium. Dev Biol 2000;223:279–290.

    Article  PubMed  CAS  Google Scholar 

  59. Kojima M, Sperelakis N, Sada H. Ontogenesis of transmembrane signaling systems for control of cardiac Ca2+ channels. J Dev Physiol 1990;14:181–219.

    PubMed  CAS  Google Scholar 

  60. Franco D, Dominguez J, de Castro Mdmdel P, et al. [Regulation of myocardial gene expression during heart development]. Rev Esp Cardiol 2002; 55:167–184.

    PubMed  Google Scholar 

  61. Saffitz JE. Connexins, conduction, and atrial fibrillation. N Engl J Med 2006;354:2712–2714.

    Article  PubMed  CAS  Google Scholar 

  62. Reaume AG, de Sousa PA, Kulkarni S, et al. Cardiac malformation in neonatal mice lacking connexin 43. Science 1995;267:1831–1834.

    Article  PubMed  CAS  Google Scholar 

  63. Britz-Cunningham SH, Shah MM, Zuppan CW, et al. Mutations of the connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med 1995;332:1323–1329.

    Article  PubMed  CAS  Google Scholar 

  64. Dasgupta C, Martinez AM, Zuppan CW, et al. Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). MutatRes 2001;479:173–186.

    CAS  Google Scholar 

  65. Delorme B, Dahl E, Jarry-Guichard T, et al. Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system. Circ Res 1997;81:423–437.

    PubMed  CAS  Google Scholar 

  66. Sperelakis N, Pappano AJ. Physiology and pharmacology of developing heart cells. Pharmacol Ther 1983;22:1–39.

    Article  PubMed  CAS  Google Scholar 

  67. Wetzel GT, Klitzner TS. Developmental cardiac electrophysiology recent advances in cellular physiology. CardiovascRes 1996;31(Spec. No.):E52–60.

    Google Scholar 

  68. Yokoshiki H, Tohse N. Developmental changes in ion channels. In: Kurachi Y, Terzic A, Cohen MV, et al., Eds. Heart Physiology and Pathophysiology. San Diego: Academic Press, 2001:719–735.

    Chapter  Google Scholar 

  69. DiFrancesco D. Serious workings of the funny current. Prog Biophys Mol Biol 2006;90:13–25.

    Article  PubMed  CAS  Google Scholar 

  70. Stieber J, Herrmann S, Feil S, et al. The hyperpo-larization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci USA 2003;100:15235–15240.

    Article  PubMed  CAS  Google Scholar 

  71. Yasui K, Liu W, Opthof T, et al. I(f) current and spontaneous activity in mouse embryonic ventricular myocytes. Circ Res 2001;88:536–542.

    PubMed  CAS  Google Scholar 

  72. Marionneau C, Couette B, Liu J, et al. Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol 2005;562:223–234.

    Article  PubMed  CAS  Google Scholar 

  73. Robinson RB, Yu H, Chang F, et al. Developmental change in the voltage-dependence of the pacemaker current, if, in rat ventricle cells. Pflugers Arch 1997;433:533–535.

    Article  PubMed  CAS  Google Scholar 

  74. Van Mierop LH. Location of pacemaker in chick embryo heart at the time of initiation of heartbeat. Am J Physiol 1967;212:407–415.

    PubMed  Google Scholar 

  75. Garcia-Frigola C, Shi Y, Evans SM. Expression of the hyperpolarization-activated cyclic nucle-otide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns 2003;3: 777–783.

    Article  PubMed  CAS  Google Scholar 

  76. Lei M, Goddard C, Liu J, et al. Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a. J Physiol 2005; 567:387–400.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Postma, A.V., Christoffels, V.M., Moorman, A.F. (2008). Developmental Aspects of the Electrophysiology of the Heart: Function Follows Form. In: Gussak, I., Antzelevitch, C., Wilde, A.A.M., Friedman, P.A., Ackerman, M.J., Shen, WK. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-84628-854-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-854-8_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-853-1

  • Online ISBN: 978-1-84628-854-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics