Skip to main content

Sodium Ion Channelopathies

  • Chapter
  • 1686 Accesses

Abstract

Voltage-gated Sodium (Na+) channels are sarcolemmal proteins that are responsible for the rapid upstroke of the cardiac action potential (AP), and for rapid impulse conduction through cardiac tissue. Therefore, Na+ channel function plays a major role in initiation, propagation, and maintenance of the normal cardiac rhythm. Mutations in SCN5A, the gene encoding for the α-subunit of the cardiac Na+ channel, the so-called “inherited sodium channelopathies,” are known to evoke multiple life-threatening disorders of cardiac rhythm that can vary from tachyarrhythmias to bradyarrhythmias and may require implantation of pacemakers or implantable cardioverter/defibrillators (ICDs). However, recent studies have also linked Na+ current (INa) dysfunction to structural cardiac defects, notably cardiac fibrosis, dilated cardiomyopathy, and, possibly, arrhythmogenic right ventricular cardiomyopathy. These structural changes may also be conducive to (reentrant) arrhythmias.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heinemann SH, Terlau H, Stuhmer W, et al. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 1992;356:441–443.

    Article  PubMed  CAS  Google Scholar 

  2. Stuhmer W, Conti F, Suzuki H, et al. Structural parts involved in activation and inactivation of the sodium channel. Nature 1989;339:597–603.

    Article  PubMed  CAS  Google Scholar 

  3. Kontis KJ, Rounaghi A, Goldin AL. Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains. J Gen Physiol 1997;110:391–401.

    Article  PubMed  CAS  Google Scholar 

  4. West JW, Patton DE, Scheuer T, et al. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci USA 1992;89:10910–10914.

    Article  PubMed  CAS  Google Scholar 

  5. Kass RS. Sodium channel inactivation in heart: A novel role of the carboxy-terminal domain. J Cardiovasc Electrophysiol 2006;17(Suppl. 1):S21–S5.

    Article  PubMed  Google Scholar 

  6. Motoike HK, Liu H, Glaaser IW, et al. The Na+ channel inactivation gate is a molecular complex: A novel role of the COOH-terminal domain. J Gen Physiol 2004;123:155–165.

    Article  PubMed  CAS  Google Scholar 

  7. Veldkamp MW, Viswanathan PC, Bezzina C, et al. Two distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel. Circ Res 2000;86:E91–97.

    PubMed  CAS  Google Scholar 

  8. Wang DW, Makita N, Kitabatake A, et al. Enhanced Na(+) channel intermediate inactivation in Brugada syndrome. Circ Res 2000;87:E37–43.

    PubMed  CAS  Google Scholar 

  9. Balser JR. The cardiac sodium channel: Gating function and molecular pharmacology. J Mol Cell Cardiol 2001;33:599–613.

    Article  PubMed  CAS  Google Scholar 

  10. Tan HL, Kupershmidt S, Zhang R, et al. A calcium sensor in the sodium channel modulates cardiac excitability. Nature 2002;415:442–447.

    Article  PubMed  CAS  Google Scholar 

  11. Horn R, Patlak J, Stevens CF. Sodium channels need not open before they inactivate. Nature 1981;291:426–427.

    Article  PubMed  CAS  Google Scholar 

  12. Tan HL, Bink-Boelkens MT, Bezzina CR, et al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature 2001;409:1043–1047.

    Article  PubMed  CAS  Google Scholar 

  13. Bezzina CR, Shimizu W, Yang P, et al. Common sodium channel promoter haplotype in asian subjects underlies variability in cardiac conduction. Circulation 2006;113:338–344.

    Article  PubMed  CAS  Google Scholar 

  14. Viswanathan PC, Benson DW, Balser JR. A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation. J Clin Invest 2003;111:341–346.

    PubMed  CAS  Google Scholar 

  15. Splawski I,Timothy KW, Tateyama M, et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 2002;297:1333–1336.

    Article  PubMed  CAS  Google Scholar 

  16. Isom LL, Catterall WA. Na+ channel subunits and Ig domains. Nature 1996;383:307–308.

    Article  PubMed  CAS  Google Scholar 

  17. Makita N, Sloan-Brown K, Weghuis DO, et al. Genomic organization and chromosomal assignment of the human voltage-gated Na+ channel beta 1 subunit gene (SCN1B). Genomics 1994;23: 628–634.

    Article  PubMed  CAS  Google Scholar 

  18. Morgan K, Stevens EB, Shah B, et al. beta 3: An additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. Proc Natl Acad Sci USA 2000;97:2308–2313.

    Article  PubMed  CAS  Google Scholar 

  19. Yu FH, Westenbroek RE, Silos-Santiago I, et al. Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci 2003;23:7577–7585.

    PubMed  CAS  Google Scholar 

  20. Kazen-Gillespie KA, Ragsdale DS, D’Andrea MR, et al. Cloning, localization, and functional expression of sodium channel beta 1A subunits. J Biol Chem 2000;275:1079–1088.

    Article  PubMed  CAS  Google Scholar 

  21. Qin N, D’Andrea MR, Lubin ML, et al. Molecular cloning and functional expression of the human sodium channel beta1B subunit, a novel splicing variant of the beta1 subunit. Eur J Biochem 2003;270:4762–4770.

    Article  PubMed  CAS  Google Scholar 

  22. Isom LL. Sodium channel beta subunits: Anything but auxiliary. Neuroscientist 2001;7:42–54.

    Article  PubMed  CAS  Google Scholar 

  23. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: A distinct clinical and electrocar-diographic syndrome. A multicenter report. J Am Coll Cardiol 1992;20:1391–1396.

    Article  PubMed  CAS  Google Scholar 

  24. Brugada J, Brugada R, Brugada P. Right bundlebranch block and ST-segment elevation in leads V1 through V3: A marker for sudden death in patients without demonstrable structural heart disease. Circulation 1998;97:457–460.

    PubMed  CAS  Google Scholar 

  25. Antzelevitch C, Brugada R. Fever and Brugada syndrome. Pacing Clin Electrophysiol 2002;25: 1537–1539.

    Article  PubMed  Google Scholar 

  26. Brugada R, Brugada J, Antzelevitch C, et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 2000;101:510–515.

    PubMed  CAS  Google Scholar 

  27. Alings M, Wilde A. “Brugada” syndrome: Clinical data and suggested pathophysiological mechanism. Circulation 1999;99:666–673.

    PubMed  CAS  Google Scholar 

  28. Sreeram N, Simmers T, Brockmeier K. The Brugada syndrome. Its relevance to paediatric practice. Z Kardiol 2004;93:784–790.

    Article  PubMed  CAS  Google Scholar 

  29. Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome: Report of the second consensus conference: Endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 2005;111:659–670.

    Article  PubMed  Google Scholar 

  30. Shimizu W. The Brugada syndrome-an update. Intern Med 2005;44:1224–1231.

    Article  PubMed  Google Scholar 

  31. Weiss R, Barmada MM, Nguyen T, et al. Clinical and molecular heterogeneity in the Brugada syndrome: A novel gene locus on chromosome 3. Circulation 2002;105:707–713.

    Article  PubMed  CAS  Google Scholar 

  32. London B, Sanyal S, Michalec M, et al. A mutation in the glycerol-3-phosphate dehydrogenase 1-like gene (GPD1L) causes Brugada syndrome. Heart Rhythm 2006;3(Suppl.):S32.

    Article  Google Scholar 

  33. Verkerk AO, Wilders R, Schulze-Bahr E, et al. Role of sequence variations in the human ether-a-go-go-related gene (HERG, KCNH2) in the Brugada syndrome. Cardiovasc Res 2005;68:441–453.

    Article  PubMed  CAS  Google Scholar 

  34. Yan GX, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation 1999;100:1660–1666.

    PubMed  CAS  Google Scholar 

  35. Meregalli PG, Wilde AA, Tan HL. Pathophysiological mechanisms of Brugada syndrome: Depolarization disorder, repolarization disorder, or more? Cardiovasc Res 2005;67:367–378.

    Article  PubMed  CAS  Google Scholar 

  36. Tukkie R, Sogaard P, Vleugels J, et al. Delay in right ventricular activation contributes to Brugada syndrome. Circulation 2004;109:1272–1277.

    Article  PubMed  Google Scholar 

  37. Smits JP, Eckardt L, Probst V, et al. Genotype-phenotype relationship in Brugada syndrome: Electrocardiographic features differentiate SCN5A-related patients from non-SCN5A-related patients. J Am Coll Cardiol 2002;40:350–356.

    Article  PubMed  CAS  Google Scholar 

  38. Probst V, Allouis M, Sacher F, et al. Progressive cardiac conduction defect is the prevailing phenotype in carriers of a Brugada syndrome SCN5A mutation. J Cardiovasc Electrophysiol 2006; 17: 270–275.

    Article  PubMed  Google Scholar 

  39. Coronel R, Casini S, Koopmann TT, et al. Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: A combined electrophysiological, genetic, histopathologic, and computational study. Circulation 2005;112:2769–2777.

    Article  PubMed  Google Scholar 

  40. Frustaci A, Priori SG, Pieroni M, et al. Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome. Circulation 2005;112:3680–3687.

    Article  PubMed  Google Scholar 

  41. Nademanee K, Veerakul G, Nimmannit S, et al. Arrhythmogenic marker for the sudden unexplained death syndrome in Thai men. Circulation 1997;96:2595–2600.

    PubMed  CAS  Google Scholar 

  42. Vatta M, Dumaine R, Varghese G, et al. Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum Mol Genet 2002;11: 337–345.

    Article  PubMed  CAS  Google Scholar 

  43. Tan HL, Hou CJ, Lauer MR, et al. Electrophysiologic mechanisms of the long QT interval syndromes and torsade de pointes. Ann Intern Med 1995;122:701–714.

    PubMed  CAS  Google Scholar 

  44. Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000;102:1178–1185.

    PubMed  CAS  Google Scholar 

  45. Bennett PB, Yazawa K, Makita N, et al. Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995;376:683–685.

    Article  PubMed  CAS  Google Scholar 

  46. Abriel H, Cabo C, Wehrens XH, et al. Novel arrhythmogenic mechanism revealed by a longQT syndrome mutation in the cardiac Na(+) channel. Circ Res 2001;88:740–745.

    Article  PubMed  CAS  Google Scholar 

  47. Kambouris NG, Nuss HB, Johns DC, et al. Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel. Circulation 1998;97:640–644.

    PubMed  CAS  Google Scholar 

  48. Rivolta I, Clancy CE, Tateyama M, et al. A novel SCN5A mutation associated with long QT-3: Altered inactivation kinetics and channel dysfunction. Physiol Genomics 2002;10:191–197.

    PubMed  CAS  Google Scholar 

  49. Wedekind H, Smits JP, Schulze-Bahr E, et al. De novo mutation in the SCN5A gene associated with early onset of sudden infant death. Circulation 2001;104:1158–1164.

    Article  PubMed  CAS  Google Scholar 

  50. Priori SG, Napolitano C, Schwartz PJ, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 2004;292:1341–1344.

    Article  PubMed  CAS  Google Scholar 

  51. Schwartz PJ, Priori SG, Locati EH, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation 1995;92:3381–3386.

    PubMed  CAS  Google Scholar 

  52. Wang DW, Yazawa K, Makita N, et al. Pharmacological targeting of long QT mutant sodium channels. J Clin Invest 1997;99:1714–1720.

    Article  PubMed  CAS  Google Scholar 

  53. Abriel H, Wehrens XH, Benhorin J, et al. Molecular pharmacology of the sodium channel mutation D1790G linked to the long-QT syndrome. Circulation 2000;102:921–925.

    PubMed  CAS  Google Scholar 

  54. Windle JR, Geletka RC, Moss AJ, et al. Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A:DeltaKPQ mutation. Ann Noninvasive Electrocardiol 2001;6:153–158.

    Article  PubMed  CAS  Google Scholar 

  55. Priori SG, Napolitano C, Schwartz PJ, et al. The elusive link between LQT3 and Brugada syndrome: The role of flecainide challenge. Circulation 2000; 102:945–947.

    PubMed  CAS  Google Scholar 

  56. Hunt CE, Hauck FR. Sudden infant death syndrome. Can Med Assoc J 2006; 174:1861–1869.

    Article  Google Scholar 

  57. Schwartz PJ, Priori SG, Dumaine R, et al. A molecular link between the sudden infant death syndrome and the long-QT syndrome. N Engl J Med 2000;343:262–267.

    Article  PubMed  CAS  Google Scholar 

  58. Ackerman MJ, Siu BL, Sturner WQ, etal. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA 2001;286: 2264–2269.

    Article  PubMed  CAS  Google Scholar 

  59. Priori SG, Napolitano C, Giordano U, et al. Brugada syndrome and sudden cardiac death in children. Lancet 2000;355:808–809.

    Article  PubMed  CAS  Google Scholar 

  60. Skinner JR, Chung SK, Montgomery D, et al. Nearmiss SIDS due to Brugada syndrome. Arch Dis Child 2005;90:528–529.

    Article  PubMed  CAS  Google Scholar 

  61. Brink PA, Ferreira A, Moolman JC, et al. Gene for progressive familial heart block type I maps to chromosome 19q13. Circulation 1995;91:1633–1640.

    PubMed  CAS  Google Scholar 

  62. de Meeus A, Stephan E, Debrus S, et al. An isolated cardiac conduction disease maps to chromosome 19q. Circ Res 1995;77:735–740.

    PubMed  Google Scholar 

  63. Schott JJ, Alshinawi C, Kyndt F, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet 1999;23:20–21.

    Article  PubMed  CAS  Google Scholar 

  64. Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circ Res 2003;92:159–168.

    Article  PubMed  CAS  Google Scholar 

  65. Herfst LJ, Potet F, Bezzina CR, et al. Na+ channel mutation leading to loss of function and non-progressive cardiac conduction defects. J Mol Cell Cardiol 2003;35:549–557.

    Article  PubMed  CAS  Google Scholar 

  66. Probst V, Kyndt F, Potet F, et al. Haploinsufficiency in combination with aging causes SCN5A-linked hereditary Lenegre disease. J Am Coll Cardiol 2003;41:643–652.

    Article  PubMed  CAS  Google Scholar 

  67. Wang DW, Viswanathan PC, Balser JR, et al. Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation 2002;105:341–346.

    Article  PubMed  CAS  Google Scholar 

  68. Laitinen-Forsblom PJ, Makynen P, Makynen H, et al. SCN5A mutation associated with cardiac conduction defect and atrial arrhythmias. J Cardiovasc Electrophysiol 2006;17:480–485.

    Article  PubMed  Google Scholar 

  69. Groenewegen WA, Firouzi M, Bezzina CR, et al. A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circ Res 2003;92:14–22.

    Article  PubMed  CAS  Google Scholar 

  70. McNair WP, Ku L, Taylor MR, et al. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 2004;110:2163–2167.

    Article  PubMed  CAS  Google Scholar 

  71. Olson TM, Michels VV, Ballew JD, et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA 2005;293:447–454.

    Article  PubMed  CAS  Google Scholar 

  72. Nakazato Y, Nakata Y, Hisaoka T, et al. Clinical and electrophysiological characteristics of atrial standstill. Pacing Clin Electrophysiol 1995;18: 1244–1254.

    Article  PubMed  CAS  Google Scholar 

  73. Makita N, Sasaki K, Groenewegen WA, et al. Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm 2005;2:1128–1134.

    Article  PubMed  Google Scholar 

  74. Ueda K, Nakamura K, Hayashi T, et al. Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. J Biol Chem 2004;279:27194–27198.

    Article  PubMed  CAS  Google Scholar 

  75. Schulze-Bahr E, Neu A, Friederich P, et al. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest 2003;111:1537–1545.

    PubMed  CAS  Google Scholar 

  76. Milanesi R, Baruscotti M, Gnecchi-Ruscone T, et al. Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med 2006;354:151–157.

    Article  PubMed  CAS  Google Scholar 

  77. Benson DW, Wang DW, Dyment M, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest 2003;112:1019–1028.

    PubMed  CAS  Google Scholar 

  78. Papadatos GA, Wallerstein PM, Head CE, et al. Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proc Natl Acad Sci USA 2002;99:6210–6215.

    Article  PubMed  CAS  Google Scholar 

  79. Royer A, van Veen TA, Le Bouter S, et al. Mouse model of SCN5A-linked hereditary Lenegre’s disease: Age-related conduction slowing and myocardial fibrosis. Circulation 2005;111:1738–1746.

    Article  PubMed  CAS  Google Scholar 

  80. van Veen TA, Stein M, Royer A, et al. Impaired impulse propagation in Scn5a-knockout mice: Combined contribution of excitability, connexin expression, and tissue architecture in relation to aging. Circulation 2005;112:1927–1935.

    Article  PubMed  Google Scholar 

  81. Martini B, Nava A, Thiene G, et al. Ventricular fibrillation without apparent heart disease: Description of six cases. Am Heart J 1989;118: 1203–1209.

    Article  PubMed  CAS  Google Scholar 

  82. Corrado D, Nava A, Buja G, et al. Familial cardiomyopathy underlies syndrome of right bundle branch block, ST segment elevation and sudden death. J Am Coll Cardiol 1996;27:443–448.

    Article  PubMed  CAS  Google Scholar 

  83. Corrado D, Basso C, Buja G, et al. Right bundle branch block, right precordial ST-segment elevation, and sudden death in young people. Circulation 2001;103:710–717.

    PubMed  CAS  Google Scholar 

  84. Peters S, Trummel M, Denecke S, et al. Results of ajmaline testing in patients with arrhythmogenic right ventricular dysplasia-cardiomyopathy. Int J Cardiol 2004;95:207–210.

    Article  PubMed  Google Scholar 

  85. Morimoto S, Uemura A, Hishida H. An autopsy case of Brugada syndrome with significant lesions in the sinus node. J Cardiovasc Electrophysiol 2005;16:345–347.

    Article  PubMed  Google Scholar 

  86. Morimoto S, Uemura A, Watanabe E, et al. A multicentre histological study of autopsied and biopsied speciments in Brugada syndrome. Eur Heart J 2003;24(Suppl.):1

    Article  Google Scholar 

  87. Ahmad F, Li D, Karibe A, et al. Localization of a gene responsible for arrhythmogenic right ventricular dysplasia to chromosome 3p23. Circulation 1998;98:2791–2795.

    PubMed  CAS  Google Scholar 

  88. Perez Riera AR, Antzelevitch C, Schapacknik E, et al. Is there an overlap between Brugada syndrome and arrhythmogenic right ventricular cardiomyopathy/dysplasia? J Electrocardiol 2005;38:260–263.

    Article  Google Scholar 

  89. Olson TM, Keating MT. Mapping a cardiomyopathy locus to chromosome 3p22-p25. J Clin Invest 1996;97:528–532.

    Article  PubMed  CAS  Google Scholar 

  90. Groenewegen WA, Wilde AA. Letter regarding article by McNair et al, “SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia”. Circulation 2005;112: e9; author reply e10.

    Google Scholar 

  91. Veldkamp MW, Wilders R, Baartscheer A, et al. Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circ Res 2003;92:976–983.

    Article  PubMed  CAS  Google Scholar 

  92. Rivolta I, Abriel H, Tateyama M, et al. Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J Biol Chem 2001;276:30623–30630.

    Article  PubMed  CAS  Google Scholar 

  93. Kyndt F, Probst V, Potet F, et al. Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation 2001;104:3081–3086.

    Article  PubMed  CAS  Google Scholar 

  94. Grant AO, Carboni MP, Neplioueva V, et al. Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. J Clin Invest 2002;110:1201–1209.

    PubMed  CAS  Google Scholar 

  95. Smits JP, Koopmann TT, Wilders R, et al. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J Mol Cell Cardiol 2005;38:969–981.

    Article  PubMed  CAS  Google Scholar 

  96. Sarkozy A, Brugada P. Sudden cardiac death and inherited arrhythmia syndromes. J Cardiovasc Electrophysiol 2005;16(Suppl. 1):S8–20.

    Article  PubMed  Google Scholar 

  97. Di Diego JM, Cordeiro JM, Goodrow RJ, et al. Ionic and cellular basis for the predominance of the Brugada syndrome phenotype in males. Circulation 2002;106:2004–2011.

    Article  PubMed  Google Scholar 

  98. Verkerk AO, Wilders R, de Geringel W, et al. Cellular basis of sex disparities in human cardiac electrophysiology. Acta Physiol 2006;187:459–477.

    Article  CAS  Google Scholar 

  99. Pham TV, Robinson RB, Danilo P Jr, et al. Effects of gonadal steroids on gender-related differences in transmural dispersion of L-type calcium current. Cardiovasc Res 2002;53:752–762.

    Article  PubMed  CAS  Google Scholar 

  100. Matsuo K, Akahoshi M, Seto S, et al. Disappearance of the Brugada-type electrocardiogram after surgical castration: A role for testosterone and an explanation for the male preponderance. Pacing Clin Electrophysiol 2003;26:1551–1553.

    Article  PubMed  Google Scholar 

  101. Ye B, Valdivia CR, Ackerman MJ, et al. A common human SCN5A polymorphism modifies expression of an arrhythmia causing mutation. Physiol Genomics 2003;12:187–193.

    PubMed  CAS  Google Scholar 

  102. Chen S, Chung MK, Martin D, et al. SNP S1103Y in the cardiac sodium channel gene SCN5A is associated with cardiac arrhythmias and sudden death in a white family. J Med Genet 2002;39:913–915.

    Article  PubMed  CAS  Google Scholar 

  103. Shimizu W. Acquired forms of the Brugada syndrome. J Electrocardiol 2005;38:22–25.

    Article  PubMed  Google Scholar 

  104. Makita N, Horie M, Nakamura T, et al. Druginduced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation 2002;106: 1269–1274.

    Article  PubMed  Google Scholar 

  105. Undrovinas AI, Maltsev VA, Sabbah HN. Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: Role of sustained inward current. Cell Mol Life Sci 1999;55:494–505.

    Article  PubMed  CAS  Google Scholar 

  106. Valdivia CR, Chu WW, Pu J, et al. Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol 2005;38:475–483.

    Article  PubMed  CAS  Google Scholar 

  107. Maltsev VA, Sabbab HN, Undrovinas AI. Downregulation of sodium current in chronic heart failure: Effect of long-term therapy with carvedilol. Cell Mol Life Sci 2002;59:1561–1568.

    Article  PubMed  CAS  Google Scholar 

  108. Zicha S, Maltsev VA, Nattel S, et al. Post-transcriptional alterations in the expression of cardiac Na+ channel subunits in chronic heart failure. J Mol Cell Cardiol 2004;37:91–100.

    Article  PubMed  CAS  Google Scholar 

  109. Wiegerinck RF, Verkerk AO, Belterman CN, et al. Larger cell size in rabbits with heart failure increases myocardial conduction velocity and QRS duration. Circulation 2006;113:806–813.

    Article  PubMed  Google Scholar 

  110. Kaab S, Nuss HB, Chiamvimonvat N, et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 1996;78: 262–273.

    PubMed  CAS  Google Scholar 

  111. Carmeliet E. Cardiac ionic currents and acute ischemia: From channels to arrhythmias. Physiol Rev 1999;79:917–1017.

    PubMed  CAS  Google Scholar 

  112. Kimura S, Bassett AL, Furukawa T, et al. Electrophysiological properties and responses to simulated ischemia in cat ventricular myocytes of endocardial and epicardial origin. Circ Res 1990; 66:469–477.

    PubMed  CAS  Google Scholar 

  113. Pogwizd SM, Corr PB. Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: Results using three-dimensional mapping. Circ Res 1987;61:352–371.

    PubMed  CAS  Google Scholar 

  114. Pu J, Boyden PA. Alterations of Na+ currents in myocytes from epicardial border zone of the infarcted heart. A possible ionic mechanism for reduced excitability and postrepolarization refractoriness. Circ Res 1997;81:110–119.

    PubMed  CAS  Google Scholar 

  115. Lue WM, Boyden PA. Abnormal electrical properties of myocytes from chronically infarcted canine heart. Alterations in Vmax and the transient outward current. Circulation 1992;85:1175–1188.

    PubMed  CAS  Google Scholar 

  116. Patterson E, Scherlag BJ, Lazzara R. Rapid inward current in ischemically-injured subepicardial myocytes bordering myocardial infarction. J Cardiovasc Electrophysiol 1993;4:9–22.

    Article  PubMed  CAS  Google Scholar 

  117. Pu J, Balser JR, Boyden PA. Lidocaine action on Na+ currents in ventricular myocytes from the epicardial border zone of the infarcted heart. Circ Res 1998;83:431–440.

    PubMed  CAS  Google Scholar 

  118. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 1991;324:781–788.

    PubMed  CAS  Google Scholar 

  119. Huang B, El-Sherif T, Gidh-Jain M, et al. Alterations of sodium channel kinetics and gene expression in the postinfarction remodeled myocardium. J Cardiovasc Electrophysiol 2001;12: 218–225.

    Article  PubMed  CAS  Google Scholar 

  120. Baetz D, Bernard M, Pinet C, et al. Different pathways for sodium entry in cardiac cells during ischemia and early reperfusion. Mol Cell Biochem 2003;242:115–120.

    Article  PubMed  CAS  Google Scholar 

  121. Ju YK, Saint DA, Gage PW. Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol 1996;497(Pt. 2):337–347.

    PubMed  CAS  Google Scholar 

  122. Wu J, Corr PB. Palmitoyl carnitine modifies sodium currents and induces transient inward current in ventricular myocytes. Am J Physiol 1994;266:H1034–H1046.

    PubMed  CAS  Google Scholar 

  123. Undrovinas AI, Fleidervish IA, Makielski JC. Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 1992;71:1231–1241.

    PubMed  CAS  Google Scholar 

  124. Ward CA, Giles WR. Ionic mechanism of the effects of hydrogen peroxide in rat ventricular myocytes. J Physiol 1997;500(Pt. 3):631–642.

    PubMed  CAS  Google Scholar 

  125. Pogwizd SM, Bers DM. Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med 2004;14:61–66.

    Article  PubMed  CAS  Google Scholar 

  126. Belardinelli L, Shryock JC, Fraser H. Inhibition of the late sodium current as a potential cardioprotective principle: Effects of the late sodium current inhibitor ranolazine. Heart 2006;92:6–14.

    Article  CAS  Google Scholar 

  127. Undrovinas AI, Belardinelli L, Undrovinas NA, et al. Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol 2006; 17(Suppl. 1):S169–S177.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Casini, S., Wilde, A.A.M., Tan, H.L. (2008). Sodium Ion Channelopathies. In: Gussak, I., Antzelevitch, C., Wilde, A.A.M., Friedman, P.A., Ackerman, M.J., Shen, WK. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-84628-854-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-854-8_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-853-1

  • Online ISBN: 978-1-84628-854-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics