Skip to main content

The Past and Promise of Basic Cardiac Electrophysiology

  • Chapter
Book cover Electrical Diseases of the Heart

Abstract

A half-century ago, as an aspiring cardiologist I entered the field of cardiac electrophysiology, frustrated by our inability to intervene successfully in lethal cardiac arrhythmia, and equally frustrated by the paucity of basic understanding of cardiac electricity upon which better treatment could be based. What a remarkable change has occurred since that time; there have been extraordinary advances in both the science and clinical care. I will begin this introduction to the section on Basic Foundations of Normal and Abnormal Cardiac Electrical Activity by identifying those basic science steps that I think have contributed to the progress of cardiac electrophysiology. These are the rich historical background for the chapters in this section. Then I will comment on the best strategy for advancing our understanding of cardiac electricity and outline some of the key questions that I think we must address. Although my personal career goal has been how we can now exploit this basic science for clinical care, more than ever basic understanding is the framework for our future advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hille B. Ion Channels of Excitable Membranes, 3rd ed. Sunderland, MA: Sinauer Associates, 2001.

    Google Scholar 

  2. Einthoven W. Le télécardiogramme. Arch Int Physiol 1906;4:132–164.

    Google Scholar 

  3. Bernstein J. Über den zeitlichen Verlauf der negativen Schwankung des nervenstroms. Arch Physiol 1902;1: 173–207.

    Article  Google Scholar 

  4. Lucas K. The “all-or-none” contraction of amphibian skeletal muscle fibre. J Physiol 1908;38: 113–133.

    Google Scholar 

  5. Adrian ED. The all-or-none principle in nerve. J Physiol 1913;47:460–474.

    Google Scholar 

  6. Mines GR. On dynamic equilibrium in the heart. J Physiol 1913;46:349–383.

    PubMed  CAS  Google Scholar 

  7. Herrick JB. Clinical features of sudden obstruction of the coronary arteries. JAMA 1912;59:2015–2018.

    Google Scholar 

  8. Hodgkin AL. The Croonian lecture. Ionic movements and electrical activity in giant nerve fibres. Proc R Soc Lond B Biol Sci 1958;148:1–37.

    Article  PubMed  CAS  Google Scholar 

  9. Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerve. Biochim Biophys Acta 1957;23:394–401.

    Article  PubMed  CAS  Google Scholar 

  10. Young JZ. Structure of nerve fibres and synapses in some invertebrates. Cold Spring Harbor Symp Quant Biol 1936;1:1–6.

    Google Scholar 

  11. Curtis HJ, Cole KS. Transverse electric impedance of the squid giant axon. J Gen Physiol 1938;21:757–765.

    Article  Google Scholar 

  12. Hodgkin AL, Huxley AF Action potentials recorded from inside a nerve fibre. Nature 1939;144:710–711.

    Article  Google Scholar 

  13. Hogg BM, Goss CM, Cole KS. Potentials in embryo rat heart muscle cultures. Proc Soc Exp Biol Med 193;32:304–307.

    Google Scholar 

  14. Hodgkin AL, Katz B. The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 1949;8:37–77.

    Google Scholar 

  15. Ling G, Gerard RW. The normal membrane potential of frog sartorius fibers. J Cell Comp Physiol 1949;34:383–396.

    Article  CAS  Google Scholar 

  16. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952;117:500–544.

    PubMed  CAS  Google Scholar 

  17. Armstrong CM, Bezanilla F. Currents related to movement of the gating particles of sodium channels. Nature 1973;242:459–461.

    Article  PubMed  CAS  Google Scholar 

  18. Woodbury LA, Woodbury JW, Hecht HH. Membrane resting and action potentials from single cardiac muscle fibers. Circulation 1950;1:265–266.

    Google Scholar 

  19. Coraboeuf E, Weidmann S. Potentiel de repos et potentiels d’action du muscle cardiaque, mesurés à l’aide d’électrodes intracellulaires. Compt Rend 1949;143:1329–1331.

    Google Scholar 

  20. Weidmann S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol 1955;127:213–224.

    PubMed  CAS  Google Scholar 

  21. Weidmann S. Effects of calcium ions and local anesthetics on the electrical properties of Purkinje fibres. J Physiol 1955;129:568–582.

    PubMed  CAS  Google Scholar 

  22. Hutter O, Trautwein W. Vagal and sympathetic effects on the pacemaker fibers in the sinus venosus of the heart. J Gen Physiol 1956;39:715–733.

    Article  PubMed  CAS  Google Scholar 

  23. Noble D. A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol 1962;60:317–352.

    Google Scholar 

  24. Deck KA, Kern R, Trautwein W. Voltage clamp technique in mammalian cardiac fibres. Pfluegers Arch 1964;280:50–62.

    Article  CAS  Google Scholar 

  25. Reuter H. The dependence of slow inward current in Purkinje fibres on the extracellular calcium concentration. J Physiol 1967;192:479–492.

    PubMed  CAS  Google Scholar 

  26. Fozzard HA, Hellam DC. Relationship between membrane voltage and tension in voltage-clamped cardiac Purkinje fibres. Nature 1968;218:588–589.

    Article  PubMed  CAS  Google Scholar 

  27. Morad M, Trautwein W. Effect of the duration of the action potential on contraction in the mammalian cardiac muscle. Pfluegers Arch 1968;299:66–82.

    Article  CAS  Google Scholar 

  28. Sutherland EW. Studies on the mechanism of hormone action. Science 1972;177:401–408.

    Article  PubMed  CAS  Google Scholar 

  29. Reuter H, Seitz H. The dependence of calcium flux from cardiac muscle on temperature and external ion concentration. J Physiol 1968;95:451–470.

    Google Scholar 

  30. Engelmann TW. Über die Leitung der Erregung im Herzmuskel. Pfluegers Arch 1877;1:465–480.

    Google Scholar 

  31. Barr L, Dewey MM, Berger W. Propagation of action potentials and the structure of the nexus in cardiac muscle. J Gen Physiol 1965;48:797–823.

    Article  PubMed  CAS  Google Scholar 

  32. Lown BR, Amarasingham R, Newman J. New method for terminating cardiac arrhythmias. JAMA 1962;182:548–5

    PubMed  CAS  Google Scholar 

  33. Kuller L. Sudden and unexpected non-traumatic deaths in adults: A review of epidemological and clinical studies. J Chronic Dis 1966;19:1165–1197.

    Article  PubMed  CAS  Google Scholar 

  34. Lie KI, Wellens HJ, van Capalle FJ, Durrer D. Lidocaine in the prevention of primary ventricular fibrillation. N Engl J Med 1974;291:1324–1326.

    PubMed  CAS  Google Scholar 

  35. Mirowski M, Mower MM, Staewen WS, Tabatznik B, Mendeloff AI. Standby automatic defibrillator. Arch Intern Med 1970;126:158–161.

    Article  PubMed  CAS  Google Scholar 

  36. Scherlag BJ, Lau SH, Helfant RA, et al. Catheter technique for recording His bundle activity in man. Circulation 1969;39:13–18.

    PubMed  CAS  Google Scholar 

  37. Cox JR, Nolle FM, Fozzard HA, et al. AZTEC, a preprocessing program for real-time ECG rhythm analysis. IEEE Trans Biomed Eng 1968;15:128–129.

    Article  PubMed  CAS  Google Scholar 

  38. Beta-Blocker Heart Attack Trial Research Group. A randomized trial of propranalol in patients with acute myocardial infarction. I. Mortality results. JAMA 1982;247:1707–1710.

    Article  Google Scholar 

  39. CAST Investigators. Preliminary report:Effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N Engl J Med 1989;321:406–412.

    Google Scholar 

  40. Hamill OP, Marty A, Neher E, et al. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pfluegers Arch 1981;391:85–100.

    Article  CAS  Google Scholar 

  41. Narahashi T, Moore JW, Scott WR. Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J Gen Physiol 1964;47:965–974.

    Article  PubMed  CAS  Google Scholar 

  42. Noda M, Shimizu S, Tanabe T, et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 1984;312: 121–127.

    Article  PubMed  CAS  Google Scholar 

  43. Rogart RB, Cribbs LL, Muglia LK, et al. Molecular cloning of a putative tetrodotoxin resistant rat heart Na channel isoform. Proc Natl Acad Sci USA 1989;86:8170–81

    Article  PubMed  CAS  Google Scholar 

  44. Tempel BL, Papazian DM, Schwarz TL, et al. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 1987;237:770–775.

    Article  PubMed  CAS  Google Scholar 

  45. Curran ME, Splawski I, Timothy KW, et al. A molecular basis for cardiac arrhythmias: HERG mutationscauselong QT syndrome. Cell 1995;80:795–803.

    Article  PubMed  CAS  Google Scholar 

  46. Wang Q, Curran ME, et al. Positional cloning of a novel potassium channel gene:KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 1996;12:17–23.

    Article  PubMed  Google Scholar 

  47. Doyle DA, Morais Cabrall J, Pfuetzner RA, et al. The structure of the potassium channel. Science 1998;280:69–77.

    Article  PubMed  CAS  Google Scholar 

  48. Gilman AG, Simon MI, Bourne HR, Harris BA, Long R, Ross EM, Stull JT, Taussig R, Bourne HR, Arkin AP, Cobb MH, Cyster JG, Devreotes PN, Ferrell JE, Fruman D, Gold M, Weiss A, Stull JT, Berridge MJ, Cantley LC, Catterall WA, Coughlin SR, Olson EN, Smith TF, Brugge JS, Botstein D, Dixon JE, Hunter T, Lefkowitz RJ, Pawson AJ, Sternberg PW, Varmus H, Subramaniam S, Sinkovits RS, Li J, Mock D, Ning Y, Saunders B, Sternweis PC, Hilgemann D, Scheuermann RH, De Camp D, Hsueh R, Lin KM, Ni Y, Seaman WE, Simpson PC, O’Connell TD, Roach T, Simon MI, Choi S, Eversole-Cire P, Fraser I, Mumby MC, Zhao Y, Brekken D, Shu H, Meyer T, Chandy G, Heo WD, Liou J, O’Rourke N, Verghese M, Mumby SM, Han H, Brown HA, Forrester JS, Ivanova P, Milne SB, Casey PJ, Harden TK, Arkin AP, Doyle J, Gray ML, Meyer T, Michnick S, Schmidt MA, Toner M, Tsien RY, Natarajan M, Ranganathan R, Sambrano GR; Participating investigators and scientists of the Alliance for Cellular Signaling. Overview of the Alliance for Cellular Signaling. Nature 2002;420:703–706.

    Article  PubMed  CAS  Google Scholar 

  49. Myerberg RJ, Kessler KM, Castellanos A. Sudden cardiac death: Structure, function, and time-dependence of risk. Circulation 1992;85(Suppl. 1): 2–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Fozzard, H.A. (2008). The Past and Promise of Basic Cardiac Electrophysiology. In: Gussak, I., Antzelevitch, C., Wilde, A.A.M., Friedman, P.A., Ackerman, M.J., Shen, WK. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-84628-854-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-854-8_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-853-1

  • Online ISBN: 978-1-84628-854-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics