Skip to main content

Image-Guided Surgery for Meningiomas

  • Chapter
Meningiomas

The primary surgical goals of neuro-oncology are to target and remove lesions while leaving functional brain tissue and vasculature intact, in order to preserve neurologic function (1). The attainment of these goals requires a clear three-dimensional (3-D) understanding and conceptualization of brain and tumor anatomy on the surgeon's part. Significant challenges for planning and actual surgery in oncology are the distortion, envelopment, invasion, and obscuration of normal and pathologic structures by the tumor. Stereotactic image-guidance techniques aim to assist the surgeon by virtually linking imaging data and in vivo anatomy. They allow the surgeon to transpose 3-D spatial information from diagnostic images onto the live anatomy of the patient, thus providing interactive 3-D localization and orientation (2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jolesz FA. Neurosurgical suite of the future II. Neuroimaging Clin N Am 2001;11:581–592.

    CAS  PubMed  Google Scholar 

  2. Spetzger U, Hubbe U, Struffert T, et al. Error analysis in cranial neuronavigation. Minimally invasive neurosurgery 2002;45:60–70.

    Article  Google Scholar 

  3. Adler JR. Surgical guidance now and in the future: the next generation of instrumentation. Clin Neurosurg 2002;49:105–114.

    PubMed  Google Scholar 

  4. Rohde V, Spangenberg P, Mayfrank L, et al. Advanced neuronavigation in skull base tumors and vascular lesions. Minim Invas Neurosurg 2005;48:13–18.

    Article  CAS  Google Scholar 

  5. Kelly PJ, Kall BA, Goerss SJ. Results of computed tomography-based computer-assisted stereotactic resection of metastatic intracranial tumors. Neurosurgery 1988;22:7–17.

    Article  CAS  PubMed  Google Scholar 

  6. Moore MR, Black PM, Ellenbogen R, et al. Stereotactic crani-otomy: methods and results using the Brown-Roberts-Wells ste-reotactic frame. Neurosurgery 1989;25:572–577.

    Article  CAS  PubMed  Google Scholar 

  7. Paleologos T, Wadley J, Kitchen N, et al. Clinical utility and cost-effectiveness of interactive image-guided craniotomy: clinical comparison between conventional and image-guided menin-gioma surgery. Neurosurgery 2000;47:40–47.

    Article  CAS  PubMed  Google Scholar 

  8. Hassenbusch SJ, Anderson JS, Pillay PK. Brain tumor resection aided with markers placed using stereotaxis guided by magnetic resonance imaging and computed tomography. Neurosurgery 1991;28:801–806.

    Article  CAS  PubMed  Google Scholar 

  9. Kleinpeter G, Lothaller C. Frameless neuronavigationn using the ISG-system in practice: from craniotomy to delineation of lesion. Minim Invas Neurosurg 2003;46:257–264.

    Article  CAS  Google Scholar 

  10. Roberts DW, Strohbehn JW, Hatch JF et al. A frameless stereo-tactic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 1986;65:545–549.

    Article  CAS  PubMed  Google Scholar 

  11. Linskey ME. Tha changing role of stereotaxis in surgical neuro-oncology. J Neuro-Oncol 2004;69:35–54.

    Article  Google Scholar 

  12. Lindseth F, Kaspersen JH, Ommedal S, et al. Multimodal image fusion in ultrasound-based neuronavigation: Improving overview and interpretation by integrating preoperative MRI with intraoperative 3-D ultrasound. Comput Aided Surg 2003;8:49–69.

    Article  PubMed  Google Scholar 

  13. Barnett GH, McKenzie RL, Ramos L, et al. Nonvolumetric ste-reotaxy-assisted craniotomy: results in 50 cases. Stereotact Funct Neurosurg 1993;61:80–95.

    Article  CAS  PubMed  Google Scholar 

  14. Kelly PJ. Computer-assisted stereotaxis: new approaches for the management of intracranial intra-axial tumors. Neurology 1986;36:535–541.

    CAS  PubMed  Google Scholar 

  15. Barnett GH, Kormos, DW, Steiner CP, Weisenberger J. Use of a frameless, armless stereotactic wand for brain tumor localization with two-dimensional and three-dimensional neuroimaging. Neurosurgery 1993;33:674–678.

    Article  CAS  PubMed  Google Scholar 

  16. Barnett GH, Kormos DW, Steiner C P, et al. Intraoperative localization using an armless, frameless stereotactic wand. Technical note. J Neurosurg 1993;78:510–154.

    CAS  Google Scholar 

  17. Galloway RL, Macuimas RJ, Latimer JW. The accuracies of four stereotactic frame systems: an independent assessment. Biomed Instrum Technol 1991;25:457–460.

    PubMed  Google Scholar 

  18. Roessler K, Ungersboeck K, Dietrich W, et al. Frameless ste-reotactic guided neurosurgery: clinical experience with an infrared based pointer device navigation system. Acta Neurochir 1997;139:551–559.

    Article  CAS  Google Scholar 

  19. Sipos EP, Tebo SA, Zinreich SJ et al. In vivo accuracy testing and clinical experience with the ISG viewing wand. Neuorsurgery 1996;39:194–204.

    Article  CAS  Google Scholar 

  20. Spetzger U, Laborde G, Gilsbach JM. Frameless neuronavigation in modern neurosurgery. Minim Invas Neurosurg 1995;38: 163–166.

    Article  CAS  Google Scholar 

  21. Barnett GH. Minimal Access Craniotomy. In. Barnett GH, Roberts DW, Maciunas RJ, eds. Image-Guided Neurosurgery: Clinical Applications of Surgical Navigation. St. Louis, MO: Quality Medical Publishing Inc., 1998:63– 71.

    Google Scholar 

  22. Barnett GH. Stereotactic techniques in the management of brain tumors. Contemp Neurosurg 1997;19:1–9.

    Google Scholar 

  23. Kelly PJ. Volumetric stereotactic surgical resection of intra-axial brain mass lesions. Mayo Clin Proc 1988;63:1186–1198.

    CAS  PubMed  Google Scholar 

  24. Kelly PJ, Kall BA, Goerss S, Earnest F IV. Computer-assisted stereotactic laser resection of intra-axial brain neoplasms. J Neu-rosurg 1986;64: 427–439.

    CAS  Google Scholar 

  25. Smith KR, Frank KJ, Buchholz RD. The NeuroStation- A highly accurate, minimally invasive solution to frameless stereotactic neurosurgery. Comput Med Imaging Graph 1994;24718:–256.

    Google Scholar 

  26. Barnett GH, Kaakaji W. Intracranial Meningiomas. In. Barnett GH, Roberts DW, Maciunas RJ, eds. Image-Guided Neurosur-gery: Clinical Applications of Surgical Navigation. St. Louis, MO: Quality Medical Publishing Inc., 1998:87– 100.

    Google Scholar 

  27. Barnett GH, Steiner CP, Kormos DW, Weisenberger J. Intracra-nial meningioma resection using interactive frameless stereo-taxy-assistance. J Image-Guided Surgery, 1995;1:46–52.

    Article  CAS  Google Scholar 

  28. Ransohoff J. Removal of convexity, parasagittal, and falcine meningiomas. Neurosurg Clin N Am 1994;5:293–297.

    CAS  PubMed  Google Scholar 

  29. Gildenberg PL, Woo SY. Multimodality program involving ste-reotactic surgery in brain tumor management. Stereotact Funct Neurosurg 2000;75:147–152.

    Article  CAS  PubMed  Google Scholar 

  30. Barnett GH, Steiner CP, Weisenberger J. Adaptation of personal projection television to a helmet-mounted display for intraoperative viewing of neuroimaging. J Image Guided Surg 1995;1: 109–112.

    Article  CAS  Google Scholar 

  31. Robinson JR, Golfinos JG, Spetzler RF. Skull base tumors: a critical appraisal and clinical series employing image guidance. Neurosurg Clin N Am 1996;7:297–311.

    PubMed  Google Scholar 

  32. Bozzao A, Finocchi V, Romano A, et al. Role of contrast-enhanced MR venography in the preoperative evaluation of para-sagittal meningiomas. Eur Radiol 2005;15:1790–1796.

    Article  PubMed  Google Scholar 

  33. Lee JH, Krishnaney AA, Steinmetz MP, et al. Intracranial menin-giomas. In. Barnett GH, Maciunas RJ, Roberts DW, eds. Computer-Assisted Neurosurgery. New York: Taylor and Francis, 2006:195– 207.

    Google Scholar 

  34. Miabi Z, Midia R, Rohrer SE, et al. Delineation of lateral tento-rial sinus with contrast-enhanced MR imaging and its surgical implications. Am J Neuroradiol 2004;25:1181–1188.

    PubMed  Google Scholar 

  35. Suzuki Y, Masateru N, Ikeda H, Takumi A. Three-dimensional computed tomography angiography of the Galenic system for the occipital transtentorial approach. Neurol Med Chir (Tokyo) 2005;45:387–394.

    Article  Google Scholar 

  36. Payner TD. Skull base neurosurgery. In. Barnett GH, Roberts DW, Maciunas RJ, eds. Image-Guided Neurosurgery: Clinical Applications of Surgical Navigation. St. Louis, MO: Quality Medical Publishing Inc., 1998:163– 177.

    Google Scholar 

  37. Kurtsoy A, Menku A, Tucer B, et al. Transbasal approaches: surgical details, pitfalls and avoidances. Neurosurg Rev 2004;27:267–273.

    Article  PubMed  Google Scholar 

  38. Kikinis R, Gleason PL, Moriarty TM, et al. Computerassisted interactive three-dimensional planning for neurosur-gical procedures (technique and application). Neurosurgery 1996;38:640–651.

    Article  CAS  PubMed  Google Scholar 

  39. Sekhar LN, Babu RP, Wright DC. Surgical resection of cranial base meningiomas. Neurosurg Clin N Am 1994;5:299–330.

    CAS  PubMed  Google Scholar 

  40. Deschler DG, Gutin PH, Mamelak AN, et al. Complications of anterior skull base surgery. Skull Base Surg 1996;6:113–118.

    Article  CAS  PubMed  Google Scholar 

  41. VanDijk JM, THomeer TW. Control of complications in the mid-frontobasal approach. Acta Neurochir 1997;139:355–358.

    Article  Google Scholar 

  42. Lang DA, Honeybul D, Neil-Dwyer G, et al. The extended trans-basal approach: clinical applications and complications. Acta Neurochir 1999;141:579–585.

    Article  CAS  Google Scholar 

  43. Sekhar LN, Nanda A, Sen CN et al. The extended frontal approach to tumors of the anterior, middle, and posterior skull base. J Neurosurg 1992;76:198–206.

    Article  CAS  PubMed  Google Scholar 

  44. Wong GK, Poon WS, Lam MK. The impact of an armless fra-meless neuronavigation system on routine brain tumour surgery: a prospective analysis of 51 cases. Minim Invas Neurosurg 2001;44:99–103.

    Article  CAS  Google Scholar 

  45. Day JD, Kellog JX, Tschabitscher M, Fukushima T. Surface and superficial surgical anatomy of the posterolateral cranial base: significance for surgical planning and approach. Neurosurgery 1996;38:1079–1084.

    Article  CAS  PubMed  Google Scholar 

  46. Lang J, Samii A. Retrosigmoid approach to the posterior cranial fossa: An anatomical study. Acta Neurochir 1991;111:147–153.

    Article  Google Scholar 

  47. Golfinos JG, Fitzpatrick BC, Smith LR, et al. Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 1995;83: 197–205.

    Article  CAS  PubMed  Google Scholar 

  48. McDermott MW, Gutin PH. Image-guided surgery for skull base neoplasms using the ISG wiewing wand: anatomic and and technical considerations. Neurosurg Clin N Am 1996;7:285–295.

    CAS  PubMed  Google Scholar 

  49. Carrau RL, Curtin HD, Snyderman, et al. Practical applications of image-guided navigation during anterior cranio-facial resection. Skull Base Surgery 1995;5:51–55.

    Article  CAS  PubMed  Google Scholar 

  50. Hwang SK, Gwak HS, Paek SH, et al. Guidelines for the ligation of the sigmoid or transverse sinus during large petroclival menin-gioma surgery. Skull Base 2004;14:21–29.

    Article  PubMed  Google Scholar 

  51. Miller CG, VanLoveren HR, Keller JT, et al. Transpetro-sal approach: surgical anatomy and technique. Neurosurgery 1993;33:461–469.

    Article  CAS  PubMed  Google Scholar 

  52. Sekhar LN, Wright, DC, Richardson R, et al. Petroclival and foramen magnum meningiomas: surgical approaches and pitfalls. J Neurooncol 1996;29:249–259.

    Article  CAS  PubMed  Google Scholar 

  53. Sakata K, Al-Mefty O, Yamamoto I. Venous consideration in petrosal approach: microsurgical anatomy of the temporal bridging vein. Neurosurgery 2000;47:153–161.

    Article  CAS  PubMed  Google Scholar 

  54. Pillay PK. Image-guided stereotactic neurosurgery with the multicoordinate manipulator microscope. Surg Neurol 1997;47:171–177.

    Article  CAS  PubMed  Google Scholar 

  55. Westermann B, Trippel M, Reinhart H. Optically-navigable operating microscope for image-guided surgery. Minim Invas Neurosurg 1995;38:112–116.

    Article  CAS  Google Scholar 

  56. Obasi PC, Barnett GH, Suh JH. Brachytherapy for intracranial meningioma using a permanently implanted iodine-125 seed. Stereotact Funct Neurosurg 2002;79:33–43.

    Article  PubMed  Google Scholar 

  57. Suh JH, Barnett GH. Brachtherapy for brain tumor. Hematol Oncol Clin North Am 1999;13:635–650.

    Article  CAS  PubMed  Google Scholar 

  58. Nimsky C, Ganslandt O, Cerny S, et al. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 2000;47:1070–1079.

    Article  CAS  PubMed  Google Scholar 

  59. Nabavi A, Black PM, Gering DT, et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 2001;48:787–797.

    Article  CAS  PubMed  Google Scholar 

  60. Ferrant M, Nabavi A, Macq B, et al. Serial registration of intraoperative MR images of the brain. Med Image Anal 2002;6: 337–359.

    Article  PubMed  Google Scholar 

  61. Maciunas RJ. Pitfalls. In. Barnett GH, Roberts DW, Maciunas RJ, eds. Image-Guided Neurosurgery: Clinical Applications of Surgical Navigation. St. Louis, : Quality Medical Publishing Inc., 1998:43– 60.

    Google Scholar 

  62. Jolesz FA, Kikinis RK, Talos IF. Neuronavigation in interven-tional MR imaging: frameless stereotaxy. NeuroimagClin N Am 2001;11:685–693.

    CAS  Google Scholar 

  63. Tummala RP, Chu RM, Liu H, et al. Optimizing brain tumor resection. High-field interventional imaging. Neuroimag Clin N Am 2001;11:673–683.

    CAS  Google Scholar 

  64. Unsgaard G, Gronningsaeter A, Ommedal S, et al. Brain operations guided by real-time two-dimensional ultrasound: new possibilities as a result of improved image quality. Neurosurgery 2002;51:402–411.

    Article  PubMed  Google Scholar 

  65. Unsgaard G, Ommedal S, Muller T, et al. Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery 2002;50:804–812.

    Article  PubMed  Google Scholar 

  66. Moriarty TM, Kikinis R, Jolesz FA, et al. Magnetic resonance imaging therapy: intraoperative MR imaging. Neurosurg Clin North Am 1996;7:323–331.

    CAS  Google Scholar 

  67. Wirtz CR, Bonsanto MM, Knauth M, et al. Intraoperative magnetic resonance imaging to update interactive navigation in neu-rosurgery: method and preliminary experience. Comput Aided Surg 1997;2:172–179.

    CAS  PubMed  Google Scholar 

  68. Nakao N, Nakai K, Itakura T. Updating of neuronavigation based on images intraoperatively acquired with a mobile computerized computerized tomographic scanner: technical note. Min Invas Neurosurg 203;46:117–120.

    Article  Google Scholar 

  69. Nimsky C, Ganslandt O, Hastreiter P, et al. Intraoperative compensation for brain shift. Surg Neurol 2001;56:357–365.

    Article  CAS  PubMed  Google Scholar 

  70. Unsgaard G, Ommedal S, Muller T, et al. Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery 2002;50: 804–812.

    Article  PubMed  Google Scholar 

  71. Dorward NL, Alberi O, Velani B, et al. Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation. J Neurosurg 1998;88:656–662.

    Article  CAS  PubMed  Google Scholar 

  72. Curry WT, McDermott MW, Carter BS, Barker FG. Craniotomy for meningioma in the United States between 1988 and 2000: decreasing rate of mortality and the effect of provider caseload. J Neursurg 1005;102:977–986.

    Article  Google Scholar 

  73. Barnett GH. Surgical management of convexity and falcine meningiomas using interactive image-guided surgery systems. Neuorosurg Clin N Am 7: 279–284.

    Google Scholar 

  74. Drummond KJ, Zhu JJ, Black PM. Meningiomas: updating basic science, management, and outcome. Neurologist 2004;10: 113–130.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Thomas, T., Barnett, G.H. (2009). Image-Guided Surgery for Meningiomas. In: Lee, J.H. (eds) Meningiomas. Springer, London. https://doi.org/10.1007/978-1-84628-784-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-784-8_22

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-910-7

  • Online ISBN: 978-1-84628-784-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics