Skip to main content

Abstract

The theory of dynamical networks is concerned with systems of dynamical units coupled according to an underlying graph structure. It therefore investigates the interplay between dynamics and structure, between the temporal processes going on at the individual units and the static spatial structure linking them. In order to analyse that spatial structure, formalized as a graph, we discuss an essentially complete system of graph invariants, the spectrum of the graph Laplacian, and how it relates to various qualitative properties of the graph. We also describe various stochastic construction schemes for graphs with certain qualitative features. We then turn to dynamical aspects and discuss systems of oscillators with diffusive coupling according to the graph Laplacian and analyse their synchronizability. The analytical tool here are local expansions in terms of eigenmodes of the graph Laplacian. This is viewed as a first step towards a general understanding of pattern formation in systems of coupled oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atay F, Biyikoglu T, Jost J (2006) On the synchronization of networks with prescribed degree distributions. IEEE Transactions on Circuits and Systems I-Regular Papers Vol 53 (1):92–98.

    Article  Google Scholar 

  2. Atay F, Jost J (2004) On the emergence of complex systems on the basis of the coordination of complex behaviors of their elements:synchronization and complexity. Complexity 10:17–22.

    Article  Google Scholar 

  3. Atay F, Jost J, Wende A (2004) Delays, connection topology, and synchronization of coupled chaotic maps. Phys Rev Lett 92:144101–144104.

    Article  Google Scholar 

  4. Barabasi A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512.

    Article  Google Scholar 

  5. Bender E, Canfield E (1978) The asymptotic number of labeled graphs with given degree sequences. J Comb Th A 24:296–307.

    Article  MATH  Google Scholar 

  6. Blanchard P, Krüger T (2004) The “Cameo” principle and the origin of scalefree graphs in social networks. J Stat Phys 114:1399–1416.

    Article  MATH  Google Scholar 

  7. Chen YH, Rangarajan G, Ding MZ (2003) General stability analysis of synchronized dynamics in coupled systems. Phys Rev E 67:26209–26212.

    Article  Google Scholar 

  8. Chung F (1997) Spectral graph theory. Regional Conference Series in Mathematics 92, Amer Math Soc, Providence.

    Google Scholar 

  9. Leader I (1991) Discrete isoperimetric inequalities. In:Bollobás B (ed) Probabilistic Combinatorics and Its Applications. AMS.

    Google Scholar 

  10. Chung F, Lu L, Vu V (2003) Spectra of random graphs with given expected degrees. PNAS 100 (11):6313–6318.

    Article  MATH  Google Scholar 

  11. Davidsen J, Ebel H, Bornholdt S (2002) Emergence of a small world from local interaction:modeling acquaintance networks. Phys Rev Lett 88:128701.

    Article  Google Scholar 

  12. Derényi I, Palla G, Vicsek T (2005) Clique percolation in random networks. Phys Rev Lett 94:160202.

    Article  Google Scholar 

  13. Erdös P, Rényi A (1959) On random graphs I. Publ Math Debrecen 6:290–291.

    Google Scholar 

  14. Girvan M, Newman M (2002) Community structure in social and biological networks. Proc Nat Acad Sci 99:7021–7026.

    Article  Google Scholar 

  15. Gladwell G, Davies EB, Leydold J, Stadler PF (2001) Discrete nodal domain theorems. Lin Alg Appl 336:51–60.

    Article  MATH  Google Scholar 

  16. Jost J (2005) Dynamical Systems. Springer.

    Google Scholar 

  17. Jost J, Joy MP (2001) Spectral properties and synchronization in coupled map lattices. Phys Rev E 65:16201–16209.

    Article  Google Scholar 

  18. Jost J, Joy MP (2002) Evolving networks with distance preferences. Phys Rev E 66:36126–36132.

    Article  Google Scholar 

  19. Kleinberg J (1999) The web as a graph:measurements, methods, and models. In:Lecture Notes in Computer Science. Springer, New York.

    Google Scholar 

  20. Klemm K, Eguíluz VM (2002) Growing scale-free networks with small-world behavior. Phys Rev E 65:057102.

    Article  Google Scholar 

  21. Klemm K, Eguíluz VM (2002) Highly clustered scale-free networks. Phys Rev E 65:036123.

    Article  Google Scholar 

  22. Lu WL (2005) Chaos synchronization in coupled map networks via time varying topology. Preprint MPIMIS.

    Google Scholar 

  23. Lu WL, Chen TP (2004) Synchronization analysis of linearly coupled map networks with discrete time systems. Physica D 198:148–168.

    Article  MATH  Google Scholar 

  24. Newman M (2002) Random graphs as models of networks. In:Bornholdt S, Schuster HG (eds) Handbook of Graphs and Networks. Wiley-VCH, Berlin.

    Google Scholar 

  25. Newman M (2003) The structure and function of complex networks. SIAM Rev 45 (2):167–256.

    Article  MATH  Google Scholar 

  26. Pastor-Satorras R, Vazquez A, Vespignani A (2001) Dynamical and correlation properties of the internet. Phys Rev Lett 87:258701–4.

    Article  Google Scholar 

  27. Pikovsky A, Rosenblum M, Kurths J (2003) Synchronization:A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge.

    Google Scholar 

  28. Rangarajan G, Ding MZ (2002) Stability of synchronized chaos in coupled dynamical systems. Phys Lett A 296:204–212.

    Article  MATH  Google Scholar 

  29. Simon H (1955) On a class of skew distribution functions. Biometrika 42:425–440.

    MATH  Google Scholar 

  30. Vázquez A (2002) Growing networks with local rules:preferential attachment, clustering hierarchy and degree correlations. Phys Rev E 67:056104.

    Article  Google Scholar 

  31. Watts D, Strogatz S (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442.

    Article  Google Scholar 

  32. Wu CW (2005) Synchronization in networks of nonlinear dynamical systems coupled via a directed graph. Nonlinearity 18:1057–1064.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Jost, J. (2007). Dynamical Networks. In: Feng, J., Jost, J., Qian, M. (eds) Networks: From Biology to Theory. Springer, London. https://doi.org/10.1007/978-1-84628-780-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-780-0_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-485-4

  • Online ISBN: 978-1-84628-780-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics