Skip to main content

Abstract

Although techniques such as RT-PCR and in situ hybridization (ISH) can give information about gene expression, they are limited in scope as typically one gene product is evaluated with each assay. The advent of transcriptional profiling using DNA microarray has revolutionized the field of molecular medicine as measurement of thousands of genes simultaneously in a given sample provide a vast amount of data for new disease classifications and biomarker discoveries. DNA microarray-based gene expression profiling relies on nucleic acid polymers, immobilized on a solid surface, which act as probes for complementary gene sequences.1 Microarrays typically contain several thousand single-stranded DNA sequences, which are “arrayed” at specific locations on a synthetic “chip” through covalent linkage. These DNA fragments provide a matrix of probes for fluorescently labeled complementary RNA (cRNA) derived from the sample of interest. The expression of each gene in the sample is quantified by the intensity of fluorescence emitted from a specific location on the array matrix which is proportional to the amount of that gene product (Figure 10.1).2

Reprinted from Sauter G, Simon R. Predictive molecular pathology. N Engl J Med 2002;347:1995–1996. (Copyright 2002 Massachusetts Medical Society)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Southern E, Mir K, Shchepinov M. Molecular interactions on microarrays. Nat Genet 1999;21:5–9.

    Article  PubMed  CAS  Google Scholar 

  2. Sauter G, Simon R. Predictive molecular pathology. N Engl J Med 2002;347:1995–1996.

    Article  PubMed  Google Scholar 

  3. Ramaswamy S, Golub TR. DNA microarrays in clinical oncology. J Clin Oncol 2002;20:1932–1941.

    PubMed  CAS  Google Scholar 

  4. Cheung VG, Morley M, Aguilar F, et al. Making and reading microarrays. Nat Genet 1999;21:15–19.

    Article  PubMed  CAS  Google Scholar 

  5. Lockhart DJ, Dong H, Byrne MC, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996;14:1675–1680.

    Article  PubMed  CAS  Google Scholar 

  6. Goldsmith ZG, Dhanasekaran N. The microrevolution: applications and impacts of microarray technology on molecular biology and medicine (review). Int J Mol Med 2004; 13:483-495.

    Google Scholar 

  7. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001;98:10869–10874.

    Article  PubMed  CAS  Google Scholar 

  8. van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415: 530–536.

    Article  Google Scholar 

  9. Wang Y, Klijn JG, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005;365:671–679.

    PubMed  CAS  Google Scholar 

  10. Rouzier R, Rajan R, Wagner P, et al. Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci USA 2005;102:8315–8320.

    Article  PubMed  CAS  Google Scholar 

  11. Chang JC, Wooten EC, Tsimelzon A, et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 2003;362:362–369.

    Article  PubMed  CAS  Google Scholar 

  12. Battifora H. The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab Invest 1986;55: 244–248.

    PubMed  CAS  Google Scholar 

  13. Kononen J, Bubendorf L, Kallioniemi A, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 1998;4:844–847.

    Article  PubMed  CAS  Google Scholar 

  14. DiVito KA, Charette LA, Rimm DL, et al. Long-term preservation of antigenicity on tissue microarrays. Lab Invest 2004;84:1071–1078.

    Article  PubMed  CAS  Google Scholar 

  15. Camp RL, Charette LA, Rimm DL. Validation of tissue microarray technology in breast carcinoma. Lab Invest 2000;80:1943–1949.

    Article  PubMed  CAS  Google Scholar 

  16. Torhorst J, Bucher C, Kononen J, et al. Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol 2001; 159:2249–2256.

    PubMed  CAS  Google Scholar 

  17. Garcia JF, Camacho FI, Morente M, et al. Hodgkin and ReedSternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood 2003;101:681–689.

    Article  PubMed  CAS  Google Scholar 

  18. Maitra A, Adsay NV, Argani P, et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 2003; 16: 902–912.

    Article  PubMed  Google Scholar 

  19. Engellau J, Akerman M, Anderson H, et al. Tissue microarray technique in soft tissue sarcoma: immunohistochemical Ki-67 expression in malignant fibrous histiocytoma. Appl Immunohistochem Mol Morphol 2001;9:358–363.

    Article  PubMed  CAS  Google Scholar 

  20. Wang S, Saboorian MH, Frenkel EP, et al. Assessment of HER-2/ neu status in breast cancer. Automated Cellular Imaging System (ACIS)-assisted quantitation of immunohistochemical assay achieves high accuracy in comparison with fluorescence in situ hybridization assay as the standard. Am J Clin Pathol 2001;116:495–503.

    Article  PubMed  CAS  Google Scholar 

  21. Sauter G, Simon R, Hillan K. Tissue microarrays in drug discovery. Nat Rev Drug Discov 2003;2:962–972.

    Article  PubMed  CAS  Google Scholar 

  22. Camp RL, Chung GG, Rimm DL. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med 2002;8:1323–1327.

    Article  PubMed  CAS  Google Scholar 

  23. Camp RL, Dolled-Filhart M, King BL, et al. Quantitative analysis of breast cancer tissue microarrays shows that both high and normal levels of HER2 expression are associated with poor outcome. Cancer Res 2003;63:1445–1448.

    PubMed  CAS  Google Scholar 

  24. Psyrri A, Yu Z, Weinberger PM, et al. Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin Cancer Res 2005;11:5856–5862.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Abu-Khalaf, M.M., Harris, L.N., Chung, G.G. (2007). DNA and Tissue Microarrays. In: Patel, H.R.H., Arya, M., Shergill, I.S. (eds) Basic Science Techniques in Clinical Practice. Springer, London. https://doi.org/10.1007/978-1-84628-740-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-740-4_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-546-2

  • Online ISBN: 978-1-84628-740-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics