Skip to main content

Robustness Design of Industrial Strength Recognition Systems

  • Chapter

Part of the Advances in Pattern Recognition book series (ACVPR)

Keywords

  • Recognition Rate
  • Recognition System
  • Postal Code
  • Document Image
  • Read Rate

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. UNLV: Information Science Research Institute. (1993). 1993 Annual Report.

    Google Scholar 

  2. Baird, H.S. (1992). Document image defect models. In: H.S. Baird, H. Bunke, and K. Yamamoto (Eds.). Structured Document Image Analysis. New York: Springer.

    Google Scholar 

  3. Bashomatsu, T., Kaneko, I., Nishijima, Y. (1992). Address block location and format identification of japanese address OCR. Proceedings of USPS Advanced Technologies Conference 5, pp. 1283–1293.

    Google Scholar 

  4. Casey, R.G. and Lecolinet, E. (1996). A survey of methods and strategies in character segmentation. IEEE Transactions Pattern Analysis and Machine Intelligence, 18(7), pp. 690-706.

    CrossRef  Google Scholar 

  5. Chen, C.H. (1995). Lexicon-driven word recognition. Proceedings of the Third ICDAR, Montreal, Canada, pp. 919–922.

    Google Scholar 

  6. Duda, R.O., Hart, P.E., and Stork, D.G. (2001). Pattern Classification, 2nd ed. New York: John Wiley & Sons.

    MATH  Google Scholar 

  7. Filatov, A., Nikitin, V., Volgunin, A., Zelinsky P. (1999). The AddressScript recognition system for handwritten envelops. In: S.-W. Lee and Y. Nakano (Eds.). Document Analysis Systems: Theory and Practice. New York: Springer, pp. 157-171.

    Google Scholar 

  8. Fu, K.S., Chien, Y.T., and Cardillo, G.P. (1967). A dynamic programming approach to sequential pattern recognition. IEEE Transactions on Electronic Computers, EC16, pp. 313–326.

    Google Scholar 

  9. Fujisawa, H., Nakano, Y., and Kurino, K. (1992). Segmentation methods for character recognition: from segmentation to document structure analysis. Proceedings of IEEE, 80(7), 1079-1092.

    CrossRef  Google Scholar 

  10. Fujisawa, H.and Liu, C.-L. (2003). Directional pattern matching for char-acter recognition revisited. Proceedings of the Seventh ICDAR, Edinburgh, Scotland, pp. 794–798.

    Google Scholar 

  11. Fujisawa, H. and Sako, H. (2003). Balance between optimistic planning and pessimistic planning in a mission critical project. Proceedings of IEMC2003, Albany, NY, pp. 605-609.

    Google Scholar 

  12. Ha, T.M. and Bunke, H. (1997). Off-line, handwritten numeral recogni-tion by perturbation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5), pp. 535–539.

    CrossRef  Google Scholar 

  13. Hamamoto, Y., Uchimura, S., Masamizu, K., and Tomita, S. (1995). Recog-nition of handprinted Chinese characters using Gabor features. Proceedings of the Third ICDAR, Montreal, Canada, pp. 819-823.

    Google Scholar 

  14. Ho, T.K., Hull, J.J., and Srihari, S.N. (1994). Decision combination in multi-ple classifier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(1), pp. 66–75.

    CrossRef  Google Scholar 

  15. Houle, G.F., Aragon, D.B., Smith, R.W., Shridhar, M., and Kimura, F. (1996). A MultiLayered corroboration-based check reader. Proceedings IAPR Workshop on Document Analysis Systems, Malvern, USA, pp. 495-546.

    Google Scholar 

  16. Ikeda, H., Furukawa, N., Koga, M., Sako, H., and Fujisawa, H. (2000). A context-free grammar-based language model for document understanding. Proceedings of DAS2000, Rio de Janeiro, Brazil, pp. 135–146.

    Google Scholar 

  17. Kagehiro, T., Koga, M., Sako, H., and Fujisawa, H. (1998). Segmentation of handwritten kanji numerals integrating peripheral information by bayesian rule. Proceedings of IAPR Workshop on Machine Vision Applications, Chiba, Japan, pp. 439-442.

    Google Scholar 

  18. Kagehiro, T., Koga, M., Sako, H., and Fujisawa, H. (2004). Address-block extraction by Bayesian rule. Proceedings of ICPR2004, 2, pp. 582–585.

    Google Scholar 

  19. Kimura, F., Sridhar, M., and Chen, Z. (1993). Improvements of Lexicon-directed algorithm for recognition of unconstrained hand-written words. Pro-ceedings of the Second ICDAR, Tsukuba, Japan, pp. 18-22.

    Google Scholar 

  20. Kimura, F., Takashina, K., Tsuruoka, S., and Miyake, Y. (1987). Modi-fied quadratic discriminant functions and the application to Chinese char-acter recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(1), pp. 149–153.

    CrossRef  Google Scholar 

  21. Koga, M., Mine, R., Sako, H., and Fujisawa, H. (1999). Lexical search approach for character-string recognition. Document analysis systems: theory and practice. In: S.-W. Lee and Y. Nakano (Eds.). New York: Springer, pp. 115-129.

    Google Scholar 

  22. Li, Y., Lopresti, D., Nagy, G., and Tomkins, A. (1996). Validation of image defect models for optical character recognition. IEEE Transactions Pattern Analysis and Machine Intelligence, 18(2), pp. 99–108.

    CrossRef  Google Scholar 

  23. Liu, C.-L., Koga, M., and Fujisawa, H. (2002). Lexicon-driven segmenta-tion and recognition of handwritten character strings for Japanese address reading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (11), pp. 1425-1437.

    CrossRef  Google Scholar 

  24. Liu, C.-L., Sako, H., and Fujisawa, H. (2004). Effects of classifier structures and training regimes on integrated segmentation and recognition of handwrit-ten numeral strings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11), pp. 1395–1407.

    CrossRef  Google Scholar 

  25. Marukawa, K., Koga, M., Shima, Y., and Fujisawa, H. (1991). An error correction algorithm for handwritten Chinese character address recognition. Proceedings of the First ICDAR, Saint-Malo, France, pp. 916-924.

    Google Scholar 

  26. Ogata, H., Ueda, Y., Marukawa, K., Sako, H., and Fujisawa, H. (1999). A method for street number matching in Japanese address recognition. Proceedings of the Fifth ICDAR, Bangalore, India, pp. 321–324.

    Google Scholar 

  27. Palumbo, P.W., Srihari, S.N., Soh, J., Sridhar, R., and Demjanenko, V. (1992). Postal address block location in real time. IEEE Computer, 25(7), pp. 34-42.

    Google Scholar 

  28. Pavlidis, T. (1983). Effects of distortions on the recognition rate of a structural OCR system. Proceedings of Computer Vision and Pattern Recognition, Washington, DC, pp. 303–309.

    Google Scholar 

  29. Simon, H.A. (1998). The sciences of the artificial, 3rd ed. Cambridge, MA: The MIT Press.

    Google Scholar 

  30. Srihari, S.N. (1992). High-performance reading machines. Proceedings of the IEEE, 80(7), pp. 1120-1132.

    CrossRef  Google Scholar 

  31. Srihari, S.N., Govindaraju, V., and Shekhawat, A. (1993). Interpretation of handwritten addresses in US mailstream. Proceedings of the Second ICDAR, Tsukuba, Japan, pp. 291–294.

    Google Scholar 

  32. Srihari, S.N., Shin, Y.-C., Ramanaprasad, V., and Lee, D.-S. (1995). Name and address block reader system for tax form processing. Proceedings of the Third ICDAR, Montreal, Canada, pp. 5-10.

    Google Scholar 

  33. Srihari, S.N., Wang, C.-H., and Palumbo, P.W. (1987). Recognizing address blocks on mail pieces. AI Magazine, 8(4), pp. 25–40.

    Google Scholar 

  34. Suen, C.Y., Mori, S., Kim, S.H., and Leung, C.H. (2003). Analysis and recog-nition of Asian scripts - the state of the art. Proceedings of the Seventh ICDAR, Edinburgh, Scotland, pp. 866-878.

    Google Scholar 

  35. Taghva, K., Nartker, T., Borsack, J., and Condit, A. (2000). UNLV-ISRI document collection for research in OCR and information retrieval. Proceed-ings of IS&T/SPIE Conference Document Recognition and Retrieval VII, San Jose, pp. 157–164.

    Google Scholar 

  36. Tang, H., Augustin, E., Suen, C.Y., Baret, O., and Cheriet, M. (2004). Spiral recognition methodology and its application for recognition of Chinese bank checks. Proceedings of the Ninth IWFHR, Kokubunji, Japan, pp. 263-268.

    Google Scholar 

  37. Winston, P.H. (1979). Artificial Intelligence. Reading, MA: Addison-Wesley, pp. 89–105.

    MATH  Google Scholar 

  38. Wolf, M. and Niemann, H. (1997). Fast address block location on handwritten and machine printed mail-piece images. Proceedings of the Fourth ICDAR, Ulm, Germany, pp. 753-757.

    Google Scholar 

  39. Yu, B., Jain, A.K., and Mohiuddin, M. (1997). Address block location on complex mail pieces. Proceedings of the Fourth ICDAR, Ulm, Germany, pp. 897–901.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Fujisawa, H. (2007). Robustness Design of Industrial Strength Recognition Systems. In: Chaudhuri, B.B. (eds) Digital Document Processing. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84628-726-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-726-8_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-501-1

  • Online ISBN: 978-1-84628-726-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics