Skip to main content

New Advances and New Challenges in On-Line Handwriting Recognition and Electronic Ink Management

  • Chapter

Part of the Advances in Pattern Recognition book series (ACVPR)

Keywords

  • Handwriting Recognition
  • Handwritten Document
  • Seventh International Workshop
  • Online Handwriting Recognition
  • Eighth International Workshop

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpaydin, E., Kaynak, C., and Alimoglu, F. (2000). Cascading multiple classifiers and representations for optical and pen-based handwritten digit recognition. Proceedings of the Seventh International Workshop on Frontiers in Hand-Writing Recognition (IWFHR), Amsterdam, pp. 453-462.

    Google Scholar 

  2. Anderson, R. et al. (2004). Experiences with a tablet PC based lecture presentation system in computer science courses. Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education. Norfolk, VA, USA: ACM Press, pp. 56-60.

    Google Scholar 

  3. Anderson, R.J., Hoyer, C., Wolfman, S.A., and Anderson, R. (2004). A study of digital ink in lecture presentation. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Vienna, Austria: ACM Press, pp. 567-574.

    Google Scholar 

  4. Anquetil, E. and Bouchereau, H. (2002). Integration of an on-line handwrit-ing recognition system in a smart phone device. Sixteenth ICPR Interna-tional Conference on Pattern Recognition (ICPR’2002), pp. 192-195.

    Google Scholar 

  5. Anquetil, E. and Lorette, G. (1996). Automatic generation of hierarchi-cal fuzzy classification systems based on explicit fuzzy rules deduced from possibilistic clustering: application to on-line handwritten character recog-nition. Sixth Information Proceedings and Management of Uncertainty in Knowledge-Based Systems (IPMU’96), pp. 259-264.

    Google Scholar 

  6. Anquetil, E. and Lorette, G. (1997). On-line handwriting character recog-nition system based on hierarchical qualitative fuzzy modeling. Progress in Handwriting Recognition. New York: World Scientific, pp. 109-116.

    Google Scholar 

  7. Anstice, J., Bell, T., Cockburn, A., and Setchell, M. (1996). The design of a pen-based musical input system. Proceedings of the Sixth Australian Conference on Computer-Human Interaction (OZCHI 1996), pp. 260-267.

    Google Scholar 

  8. Artières, T., Marchand, J.M., and Gallinari, P. (2000). Stroke level modeling of on line handwriting trough multi-modal segmental models. Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recog-nition, Amsterdam, pp. 93-102.

    Google Scholar 

  9. Bahlmann, C., Haasdonk, B., and Burhardt, H. (2002). On-line handwriting recognition with support vector machines - a kernel approach. Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recog-nition (IWFHR), Niagara on the Lake, pp. 49-54.

    Google Scholar 

  10. Berthilsson, R.(2000). Character recognition using shape for curves. Proceedings of the International Conference on Pattern Recognition, pp. 2227-2230.

    Google Scholar 

  11. Bishop, C.M., Svensen, M., and Hinton, G.E. (2004). Distinguishing text from graphics in on-line handwritten ink. Ninth Workshop on Frontiers in Handwriting Recognition (IWFHR’04), Tokyo, Japan, pp. 142-147.

    Google Scholar 

  12. Blanchard, J. and Artières, T. (2004). On-line handwritten document seg-mentation. IWFHR’04: Proceedings of the Ninth International Workshop on Frontiers in Handwriting Recognition, pp. 148-153.

    Google Scholar 

  13. Blostein, D., Cordy, J.R., and Zanibbi, R. (2002). Applying compiler tech-niques to diagram recognition. ICPR’02: Proceeding of the Sixteenth IAPR International Conference on Pattern Recognition, pp. 123-126.

    Google Scholar 

  14. Blostein, D., Cordy, J.R., and Zanibbi, R. (2004). A survey of table recog-nition: models, observations, transformations, and inferences. International Journal on Document Analysis and Recognition, 7(1), pp. 1-16.

    Google Scholar 

  15. Bouteruche, F., Deconde, G., Anquetil, E., and Jamet, E. (2005). Design and evaluation of handwriting input interfaces for small-size mobile de-vices. Workshop of HCI’2005: Improving and Assessing Pen-Based Input Techniques, Edinburgh.

    Google Scholar 

  16. Brakensiek, A., Kosmala, A., and Rigoll, G. (2001). Comparing adaptation techniques for on-line handwriting recognition. Sixth ICDAR, pp. 486-490.

    Google Scholar 

  17. Bruzzone, E. and Coffetti, M. (1999). An algorithm for extracting cursive text lines. Fifth International Conference on Document Analysis and Recog-nition (ICDAR’99), Bangalore, India, pp. 749-752.

    Google Scholar 

  18. Bunke, H., Siebenthal, T.V., Yamasaki, T., and Schenkel, M. (1999). On-line handwriting data acquisition using a video camera. Proceedings of the Fifth International Conference on Document Analysis and Recognition, ICDAR’99, Bangalore, pp. 573-576.

    Google Scholar 

  19. Carbonnel, S. and Anquetil, E. (2004). Lexicon organization and string edit distance learning for lexical post-processing in handwriting recogni-tion. Ninth International Workshop on Frontiers in Handwriting Recogni-tion (IWFHR 9), Tokyo, Japan, pp. 462-467.

    Google Scholar 

  20. Castagliola, G., Deufemia, V. (2003). Visual language editor based on LR parsing technologies. IWPT’03: Eighth International Workshop on Parsing Technologies. Berlin: Springer, pp. 79-90.

    Google Scholar 

  21. Chan, K.-F. and Yeung, D.-Y. (2001). PenCalc: a novel application of on-line mathematical expression recognition technology. ICDAR’01: International Conference on Document Analysis and Recognition, pp. 774-778.

    Google Scholar 

  22. Chhabra, A.K. (1997). Graphic symbol recognition: an overview. In: K. Trombre, A.K. Chhabra (Eds.). Selected Papers from the Second Interna-tional Workshop on Graphics Recognition, Algorithms and Systems. Berlin: Springer, pp. 68-79.

    Google Scholar 

  23. Cho, S.-J. et al. (2004). Magic wand: a hand-drawn gesture input device in 3-D space with inertial sensors. IWFHR’04: Proceedings of the Ninth Inter-national Workshop on Frontiers in Handwriting Recognition, pp. 106-111.

    Google Scholar 

  24. Cho, S.-J. and Kim, J. (2003). Bayesian network modeling of Hangul char-acters for on-line handwriting recognition. Proceedings of the Seventh In-ternational Conference on Document Analysis and Recognition (ICDAR), Edinburgh, pp. 207-211.

    Google Scholar 

  25. Choi, H., Cho, S.J., and Kim, J. (2004). Writer dependent online handwrit-ing generation with Bayesian network. Proceedings of the Ninth Interna-tional Workshop on Frontiers in handwriting Recognition (IWFHR), Tokyo, pp. 130-135.

    Google Scholar 

  26. Connell, S.D. and Jain, A.K., (2002). Writer adaptation for online hand-writing recognition. IEEE Transaction on Pattern Analysis and Machine Intelligence, 24(3), pp. 329-346.

    CrossRef  Google Scholar 

  27. Dziadosz, S., Helfrich, A., Citron, R., and Lund, A. (2005). Designing a user-driven method to improve handwriting recognition on a tablet PC. Workshop of HCI’2005, Improving and Assessing Pen-Based Input Tech-niques, Edinburgh.

    Google Scholar 

  28. Ellis, S.E. and Groth, D.P. (2004). A collaborative annotation system for data visualization. Proceedings of the Working Conference on Advanced Visual Interfaces. Gallipoli, Italy: ACM Press, pp. 411-414.

    Google Scholar 

  29. Faure, C. and Lecolinet, E. (1998). Survey of the state of the art in hu-man language technology. C.R.A. Eds et al. (Eds.). Cambridge: Cambridge University Press, pp. 70-73.

    Google Scholar 

  30. Fitzgerald, J., Geiselbrechtinger, F., and Kechadi, T. (2004). Application of fuzzy logic to online recognition of handwritten symbols. Proceedings of the Ninth International Workshop on Frontiers in Handwriting Recognition, Tokyo, pp. 395-400.

    Google Scholar 

  31. Fleetwood, M.D. et al. (2002). An evaluation of text-entry in palm os -graffiti and the virtual keyboard. Proceedings of the Human Factors and Ergonomics Society Fourty-Sixth Annual Meeting (HFES’02), Baltimore, pp. 617-621.

    Google Scholar 

  32. Forsberg, A., Dieterich, M., and Zeleznik, R. (1998). The music notepad. Proceedings of the Eleventh ACM Symposium on User Interface Software and Technology (UIST’98), San Francisco, USA, pp. 203-210.

    Google Scholar 

  33. Garain, U. and Chaudhuri, B.B. (2004). Recognition of online handwrit-ten mathematical expressions. IEEE Transactions on Systems, Man and Cybernetics - Part B, 34(6), pp. 2366-2376.

    CrossRef  Google Scholar 

  34. Gross, M.D. (1994). Recognizing and Interpreting Diagrams in Design. Pro-ceedings of the Second Workshop on Advanced Visual Interfaces (AVI’94), Bari, pp. 88-94.

    Google Scholar 

  35. Guimbretière, F. (2003). Paper augmented digital documents. Proceedings of the Sixteenth Annual ACM Symposium on User Interface Software and Technology. Vancouver, Canada: ACM Press, pp. 51-60.

    Google Scholar 

  36. Guyon, I., Schenkel, M., and Denker, J. (1997). In: H. Bunke (Eds.). Hand-book of Character Recognition and Document Image Analysis. Singapore: World Scientific, pp. 183-225.

    Google Scholar 

  37. Guyon, I. and Warwick, C. (1998). In: C.R.A. Eds et al. (Eds.). Survey of the State of the Art in Human Language Technology. Cambridge: Cambridge University Press, pp. 73-77.

    Google Scholar 

  38. Hsu, R.C. and Mitchell, W.E. (1997). After 400 years, print is still superior. Communications of the ACM, 40(10), pp. 27-28.

    CrossRef  Google Scholar 

  39. Htwe, S.M., Higgins, C., Leedham, G., and Yang, M. (2005). Tranlitera-tion of online handwritten Phonetic Pitman’s shorthand with the use of a Bayesian network. Proceedings of the Eighth International Conference on Document Analysis and Recognition (ICDAR), Seoul, pp. 1090-1094.

    Google Scholar 

  40. Jaeger, S. (2000). On the complexity of Cognition. Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition (IWFHR), Amsterdam, pp. 291-302.

    Google Scholar 

  41. Jaeger, S., Liu, C.L., and Nakagawa, M. (2003). The state of the art in Japanese online handwriting recognition compared to techniques in western handwriting recognition. International Journal on Document and Analysis Recognition, 6(2), pp. 75-88.

    CrossRef  Google Scholar 

  42. Jaeger, S, Manke S, and Waibel, A. (2000). NPEN++: an on-line hand-writing recognition system. Proceedings of the Seventh International Work-shop on Frontiers in Handwriting Recognition (IWFHR), Amsterdam, pp. 249-260.

    Google Scholar 

  43. MacKenzie, I.S. and Zhang, S.X. (1997). The immediate usability of graf-fiti. Proceedings of the Conference on Graphics Interface’97. Toronto, Ont., Canada: Canadian Information Processing Society, pp. 129-137.

    Google Scholar 

  44. Marshall, C., Price, M., Golovchinsky, G., and Schilit, B.N. (1999). Intro-ducing a digital library reading appliance into a reading group. Proceedings of the Fourth ACM Conference on Digital Libraries. Berkeley, California, USA: ACM Press, pp. 77-84.

    Google Scholar 

  45. Marti, U.V. and Bunke, H. (2001). Text line segmentation and word recog-nition in a system for general writer independent handwriting recogni-tion. Sixth International Conference on Document Analysis and Recognition (ICDAR’01), Seattle, USA, pp. 159-163.

    Google Scholar 

  46. Marukatat, S. and Artières, T. (2004). Handling spatial information in online handwriting recognition. Proceedings of the Ninth International Work-shop on Frontiers in Handwriting Recognition (IWFHR), Tokyo, pp. 14-19.

    Google Scholar 

  47. Maruyama, K.-I., Maruyama, M., Miyao, H., and Nakano, Y. (2002). Hand-printed Hiragana recognition using support vector machines. Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR), Niagara on the Lake, pp. 55-60.

    Google Scholar 

  48. Matic, N., Guyon, I., Denker, J., and Vapnik, V. (1993). Writer-adaptation for on-line handwritten character recognition. ICDAR93, pp. 187-191.

    Google Scholar 

  49. Matic, N., Platt, J., and Wang, T. (2002). QuickStroke: an incremental on-line Chinese handwriting recognition system. Proceedings of the Seventeenth International Conference on Pattern Recognition (ICPR), Quebec, pp. 435-439.

    Google Scholar 

  50. Miyao, H. and Maruyama, M. (2004). An online handwritten music score recognition system. Proceedings of the Seventeenth International Confer-ence on Pattern Recognition (ICPR’2004). Washington, DC, USA: IEEE Computer Society, pp. 461-464.

    Google Scholar 

  51. Miyao, H., Maruyama, M., Nakano, Y., and Hananoi, T. (2005). Off-line handwritten character recognition by SVM based on the virtual exam-ples synthesized from on-line characters. Proceedings of the Eighth Interna-tional Conference on Document Analysis and Recognition (ICDAR), Seoul, pp. 494-498.

    Google Scholar 

  52. Mouchère, H., Anquetil, E., and Ragot, N. (2005). On-line writer adaptation for handwriting recognition using fuzzy inference systems. Proceedings of the Eighth International Conference on Document Analysis and Recognition (ICDAR). Seoul, Korea: IEEE Computer Society, pp. 1075-1079.

    Google Scholar 

  53. Nakagawa, M., Machii, K., Kato, N., and Souya T. (1993). Lazy recognition as a principle of pen interfaces. Proceedings of the Conference Companion on Human Factors in Computing Systems (INTERACT’93 and CHI’93). New York, NY, USA: ACM Press, pp. 89-90.

    Google Scholar 

  54. Ng, E., Bell, T., and Cockburn, A. (1998). Improvements to a pen-based musical input system. Proceedings of the Eighth Australasian Conference on Computer Human Interaction (OZCHI’98). Washington, DC, USA: IEEE Computer Society, pp. 178-185.

    Google Scholar 

  55. Oh, J.K., et al. (2004). Inertial sensor based recognition of 3-D character gestures with an ensemble of classifiers. Proceedings of the Ninth International Workshop on Frontiers in Handwriting Recognition (IWFHR’04). Washington, DC, USA: IEEE Computer Society, pp. 112-117.

    Google Scholar 

  56. Oudot, L., Prevost, L., Moises, A., and Milgram, M. (2004). Self-supervised adaptation for on-line text recognition. Ninth International Workshop on Frontiers in Handwriting Recognition (IWFHR’04), pp. 9-13.

    Google Scholar 

  57. Perraud, F., Viard-Gaudin, C., Morin, E., and Lallican, P.-M. (2003). N-gram and N-class models for on line handwriting recognition. Sev-enth International Conference on Document Analysis and Recognition (IC-DAR’03), pp. 1053-1057.

    Google Scholar 

  58. Pitrelli, J.F. and Ratzlaff, E.H. (2000). Quantifying the contribution of language modeling to write-independent on-line handwriting recognition. Proceedings of the Seventh International Workshop on Frontiers in Hand-writing Recognition (IWFHR), Amsterdam, pp. 383-392.

    Google Scholar 

  59. Plamondon, R. (1998). In: R.A. Cole, et al. (Eds.). Survey of the State of the Art in Human Language Technology. Cambridge: Cambridge University Press, pp. 77-81.

    Google Scholar 

  60. Plamondon, R., Lopresti, D., Schomaker, L. and Srihari, R. (1999). Wiley Encyclopedia of Electrical and Electronics Engineering. Eds WJ (ed) Wiley. pp. 123-146.

    Google Scholar 

  61. Plamondon, R. and Srihari, S. (2000). On-line and off-line handwriting recognition: a comprehensive survey. IEEE Transactions on Pattern Analy-sis and Machine Intelligence, 22(1), pp. 63-84.

    CrossRef  Google Scholar 

  62. Prevost, L., Michel-Sendis, C., Moises, A., Oudot, L., and Milgram, M. (2003). Combining model-based and discriminative classifiers: application to handwritten character recognition. Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR), Edinburgh, pp. 31-35.

    Google Scholar 

  63. Pu, Y. and Shi, Z. (1998). A natural learning algorithm based on Hough transform for text lines extraction in handwritten documents. Proceedings of the sixth International Workshop on Frontiers in Handwriting Recognition (IWFHR’98), Taejon, Korea, pp. 637-646.

    Google Scholar 

  64. Qiao, Y., Nishhizra, M., and Yasuhara, M. (2005). A novel approach to recover writing order from single stroke offline handwritten images. Pro-ceedings of the Eighth International Conference on Document Analysis and Recognition (ICDAR), Seoul, pp. 227-231.

    Google Scholar 

  65. Quiniou, S., Anquetil, E., and Carbonnel, S. (2005). Statistical language models for on-line handwritten sentence recognition. Proceedings of the Eighth International Conference on Document Analysis and Recognition (ICDAR’05), Seoul, Korea, pp. 516-520.

    Google Scholar 

  66. Ragot, N. and Anquetil, E. (2003). A generic hybrid classifier based on hiearchical fuzzy modeling: experiments on on-line handwritten character recognition. Proceedings of the Seventh International Conference on Docu-ment Analysis and Recognition (ICDAR), Edinburgh, pp. 963-967.

    Google Scholar 

  67. Ramachandran, S. and Kashi, R. (2003). An architecture for ink annotations on web documents. Seventh International Conference on Document Analysis and Recognition (ICDAR’03), p. 256.

    Google Scholar 

  68. Ratzlaff, E.H. (2000). Inter-line distance estimation and text line extraction for unconstrained online handwriting. Seventh International Workshop on Frontiers in Handwriting Recognition (IWFHR’00), Amsterdam, The Netherland, pp. 33-42.

    Google Scholar 

  69. Rousseau, L., Anquetil, E., and Camillerapp, J. (2005). Recovery of a draw-ing order from off-line isolated letters dedicated to online recognition. Pro-ceedings of the Eighth International Conference on Document Analysis and Recognition (ICDAR), Seoul, pp. 1121-1125.

    Google Scholar 

  70. Sears, A. and Arora, R. (2002). Data entry for mobile devices: an empirical comparison of novice performance with Jot and Graffiti. Interacting with Computers, 14, pp. 413-433.

    CrossRef  Google Scholar 

  71. Seni, G. (2002). TreadMill Ink - enabling continuous pen input on small devices. Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR’02), Ontario, Canada, pp. 215-220.

    Google Scholar 

  72. Seni, G., Kripasundar, V., and Srihari, R.K. (1996). Generalizing edit dis-tance to incorporate domain information: handwritten text recognition as a case study. Pattern Recognition, 29, pp. 405-414.

    CrossRef  Google Scholar 

  73. Seni, G., Srihari, R.K., and Nasrabadi, N. (1996). Large vocabulary recognition of on-line handwritten cursive words. IEEE Transactions on PAMI, 18(7), pp. 757-762.

    Google Scholar 

  74. Shilman, M., Pasula, H., Russell, S., and Newton, R. (2002). Statistical vi-sual language models for ink parsing. AAAI Spring Symposium, pp. 126-132.

    Google Scholar 

  75. Shilman, M., Viola, P., and Chellapilla, K. (2004). Recognition and grouping of handwritten text in diagrams and equations. Ninth International Work-shop on Frontiers in Handwriting Recognition (IWFHR’04), Tokyo, Japan, pp. 569-574.

    Google Scholar 

  76. Shilman, M., Wei, Z., Raghupathy, S., Simard, P., and Jones, D. (2003). Discerning structure from freeform handwritten notes. Seventh Interna-tional Conference on Document Analysis and Recognition (ICDAR’03), Edinburgh, Scotland, pp. 60-65.

    Google Scholar 

  77. Sternby, J. and Friberg, C. (2005). The recognition graph-language indepen-dent adaptable on-line cursive script recognition. Proceedings of the Eighth International Conference on Document Analysis and Recognition (ICDAR), pp. 14-18.

    Google Scholar 

  78. Subrahmonia, J. (2000). Similarity measures for writer clustering. Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition (IWFHR), Amsterdam, pp. 541-546.

    Google Scholar 

  79. Sweller, J. and Chandler, P. (1991). Evidence for cognitive load theory. Cognition and Instruction, 8, pp. 351-362.

    CrossRef  Google Scholar 

  80. Szummer, M. and Qi, Y. (2004). Contextual recognition of hand-drawn shapes with conditional random fields. Proceedings of the Ninth Interna-tional Workshop on Frontiers in Handwriting Recognition (IWFHR’04), Tokyo, Japan, pp. 32-37.

    Google Scholar 

  81. Tapia, E. and Rojas, R. (2003). Recognition of on-line handwritten math-ematical expressions using a minimum spanning tree construction and symbol dominance. Proceedings of the Fifth IAPR International Work-shop on Graphics Recognition (GREC’03), Barcelona, Catalonia, Spain, pp. 329-340.

    Google Scholar 

  82. Thimbleby, W. (2004). A novel pen-based calculator and its evaluation. Pro-ceedings of the Third Nordic Conference on Human-Computer Interaction (NordiCHI’04). Tampere, Finland: ACM Press, pp. 445-448.

    Google Scholar 

  83. Toyozumi, K., Mori, K., Suenaga, Y., and Suzuki, T. (2001). A system for real-time recognition of handwritten mathematical formulas. Proceedings of the Sixth International Conference on Document Analysis and Recognition (ICDAR’01), Seattle, WA, USA, pp. 1059-1064.

    Google Scholar 

  84. Velek, O., Jaeger, S., and Nakagawa, M. (2002). A new warping tech-nique for normalizing likelihood of multiple classifiers and its effectiveness in combined on-line/off-line Japanese character recognition. Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR), Niagara on the Lake, pp. 177-182.

    Google Scholar 

  85. Vinciarelli, A. (2003). Combining online and offline handwriting recognition. Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR), Edinburgh, pp. 844-848.

    Google Scholar 

  86. Vuori, V. (2002). Adaptive Methods for On-Line Recognition of Isolated Handwritten Characters. Helsinki University of Technology.

    Google Scholar 

  87. Vuurpijl, L. and Schomaker, L. (2000). Two-stage character classification: a combined approach of clustering and support vector classifiers. Proceed-ings of the Seventh International Workshop on Frontiers in Handwriting Recognition (IWFHR), Amsterdam, pp. 423-432.

    Google Scholar 

  88. Zheng, Y., Li, H., and Doermann, D. (2004). Machine printed text and handwriting identification in noisy document images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3), pp. 337-353.

    CrossRef  Google Scholar 

  89. Zheng, Y., Li, H., and Doermann, D. (2002). The segmentation and identi-fication of handwriting in noisy document images. Proceedings of the Fifth International Workshop on Document Analysis Systems (DAS’02). London, UK: Springer-Verlag, pp. 95-105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Anquetil, E., Lorette, G. (2007). New Advances and New Challenges in On-Line Handwriting Recognition and Electronic Ink Management. In: Chaudhuri, B.B. (eds) Digital Document Processing. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84628-726-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-726-8_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-501-1

  • Online ISBN: 978-1-84628-726-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics