Skip to main content

OCR Technologies for Machine Printed and Hand Printed Japanese Text

  • Chapter

Part of the Advances in Pattern Recognition book series (ACVPR)

Keywords

  • Text Line
  • Character Segmentation
  • Chain Code
  • Chinese Character Recognition
  • Require Computation Time

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duda, T.O. and Hart, P.E. (1973). Pattern Classification and Scene Analysis. New York: John Wiley & Sons, Inc.

    MATH  Google Scholar 

  2. Kimura, F., Shridhar, M., and Chen, Z. (1993). Improvements of a lexi-con directed algorithm for recognition of unconstrained handwritten words. Proceedings of 2nd ICDAR, pp. 18-22.

    Google Scholar 

  3. Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, 2nd ed. New York: Academic Press.

    MATH  Google Scholar 

  4. Ikeda, M., Tanaka, H., and Moto-oka, T. (1983). Projection distance method for recognition of hand-written characters. Transactions of IPS Japan, 24(1), pp. 106-112.

    Google Scholar 

  5. Ishitani, Y. (1993). Document skew detection based on local region complexity. Proceedings of 2nd ICDAR, pp. 49-52.

    Google Scholar 

  6. Kimura, F., Miyake, Y., and Shridhar, M. (1995). ZIP code recognition using lexicon free word recognition algorithm. Proceedings of 3rd ICDAR, pp. 906-910.

    Google Scholar 

  7. Kimura, F., Takashina, K., Tsuruoka, S. and Miyake, Y. (1987). Modified quadratic discriminant functions and the application to Chinese character recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 9(1), pp. 149-153.

    CrossRef  Google Scholar 

  8. Kimura, F., Wakabayashi, T., and Miyake, Y. (1996). On feature extraction for limited class problem. Proceedings of 13th ICPR, pp. 191-194.

    Google Scholar 

  9. Kimura, F., Wakabayashi, T., Tsuruoka, S., and Miyake, Y. (1997). Improvement of handwritten Japanese character recognition using weighted direction code histogram. Pattern Recognition, 30(8), pp. 1329-1337.

    CrossRef  Google Scholar 

  10. Kohonen, T. (1989). Self-Organization and Associative Memory, 3rd ed. Berlin: Springer-Verlag.

    Google Scholar 

  11. Oja, E. (1983). Subspace Methods of Pattern Recognition. England: Research Studies Press.

    Google Scholar 

  12. Saito, T., Yamada, H., and Yamamoto, K. (1985). An analysis of handprinted character database VIII: an estimation of the database ETL9 of hand-printed characters in JIS Chinese characters by directional pattern match-ing approach (in Japanese). Bulletin of Electrotechnical Laboratory Japan, 49 (7), pp. 487-525.

    Google Scholar 

  13. Sato, A. and Yamada K. (1996). Generalized learning vector quantization. Advances in Neural Information Processing. Cambridge, MA: MIT Press, Volume 8, pp. 423-429.

    Google Scholar 

  14. Tsukumo, J. and Tanaka, H. (1988). Classification of handprinted Chinese characters using non-linear normalization and correlation methods. Proceed-ings of 9th ICPR, pp. 168-171.

    Google Scholar 

  15. Wakabayashi, T., Shi, M., Ohyama, W., and Kimura, F. (2001). Accuracy improvement of handwritten numeral recognition by Mirror Image Learning. Proceedings of ICDAR’01, pp. 338-343.

    Google Scholar 

  16. Wakabayashi, T., Tsuruoka, S., Kimura, F., and Miyake, Y. (1995). Increas-ing the feature size in handwritten numeral recognition to improve accuracy. Systems and Computers in Japan, 26(8), pp. 35-44 (English Edition). Scripta Technica, Inc.

    CrossRef  Google Scholar 

  17. Watanabe, S. and Pakvasa, N. (1973). Subspace method of pattern recog-nition. Proc. of 1st International Joint Conference on Pattern Recognition. Washington, DC, Oct-Nov. pp. 2-32.

    Google Scholar 

  18. Yamada, H., Yamamoto, K., and Saito, T. (1990). A nonlinear normalization method for handprinted Kanji character recognition - line density equaliza-tion. Pattern Recognition, 23(9), pp. 1023-1029.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kimura, F. (2007). OCR Technologies for Machine Printed and Hand Printed Japanese Text. In: Chaudhuri, B.B. (eds) Digital Document Processing. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84628-726-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-726-8_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-501-1

  • Online ISBN: 978-1-84628-726-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics