Skip to main content

Biometric and Forensic Aspects of Digital Document Processing

  • Chapter

Part of the Advances in Pattern Recognition book series (ACVPR)

Keywords

  • Document Image
  • Kullback Leibler
  • False Reject Rate
  • Stroke Width
  • Handwritten Document

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Srihari, S.N., Cha, S., Arora, H., and Lee, S. (2002). Individuality of hand-writing. Journal of Forensic Sciences, 47(4), pp. 856-872.

    Google Scholar 

  2. Franke, K., Schomaker, L., Vuurpijl, L., and Giesler, S. (2003). Fish-new: a common ground for computer-based forensic writer identification. Proceedings of the Third European Academy of Forensic Science Triennial Meeting, Istanbul, Turkey, p. 84.

    Google Scholar 

  3. Srihari, S.N., Zhang, B., Tomai, C., Lee, S., Shi, Z., and Shin, Y.C. (2003). A system for hand-writing matching and recognition. Proceedings of the Symposium on Document Image Understanding Technology (SDIUT), Greenbelt, MD.

    Google Scholar 

  4. Huber, R. and Headrick, A. (1999). Handwriting Identification: Facts and Fundamentals. Boca Raton, FL: CRC Press.

    Google Scholar 

  5. Srikantan, G., Lam, S., and Srihari, S.N. (1996). Gradient-based contour encoding for character recognition. Pattern Recognition, 7, pp. 1147-1160.

    CrossRef  Google Scholar 

  6. Zhang, B. and Srihari, S.N. (2003). Analysis of handwriting individuality using handwritten words. Proceedings of the Seventh International Conference on Document Analysis and Recognition, Edinburgh, Scotland.

    Google Scholar 

  7. Zhang, B., Srihari, S.N., and Lee, S.-J. (2003). Individuality of handwritten characters. Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR), pp. 1086-1090.

    Google Scholar 

  8. Osborn, A.S. (1029). Questioned Documents. London: Nelson Hall Pub.

    Google Scholar 

  9. Champod, C. (1999). The inference of identity of source: theory and practice. The First International Conference on Forensic Human Identification in the Millennium, London, UK, October 1999, pp. 24-26.

    Google Scholar 

  10. Tippett, C.F., Emerson, V.J., Fereday, M.J., Lawton, F., and Lampert, S.M. (1968). The evidential value of the comparison of paint flakes from sources other than vehicules. Journal of Forensic Sciences Society, 8, pp. 61-65.

    CrossRef  Google Scholar 

  11. Plamondon, R. and Srihari, S.N. (2000). On-line and off-line handwriting recognition: a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), pp. 63-84.

    CrossRef  Google Scholar 

  12. Plamondon, R. and Lorette, G. (2000). On-line and off-line handwriting recognition: a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), pp. 63-84.

    CrossRef  Google Scholar 

  13. Kalera, M.K., Zhang, B., and Srihari, S.N. (2003). Off-line signature verification and identification using distance statistics. Proceedings of the International Graphonomics Society Conference, Scottsdale, AZ, pp. 228-232.

    Google Scholar 

  14. Horn, B. (1986). Robot Vision. Cambridge, MA: MIT Press.

    Google Scholar 

  15. Munich, M.E. and Perona, P. (2003). Visual identification by signature tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2), pp. 200-217.

    CrossRef  Google Scholar 

  16. Fang, B., Leung, C.H., Tang, Y.Y., Tse, K.W., Kwok, P.C.K., and Wong, Y.K. (2003). Off-line signature verification by the tracking of feature and stroke positions. Pattern Recognition, 36, pp. 91-101.

    CrossRef  MATH  Google Scholar 

  17. Lee, S. and Pan, J.C. (1992). Off-line tracing and representation of signatures. IEEE Transactions on Systems, Man and Cybernetics, 22, pp. 755-771.

    CrossRef  MATH  Google Scholar 

  18. Sabourin, R. and Plamondon, R. (1986). Preprocessing of handwritten signatures from image gradient analysis. Proceedings of the Eighth International Conference on Pattern Recognition, pp. 576-579.

    Google Scholar 

  19. Lin, C.C. and Chellappa, R. (1997). Classification of partial 2-d shapes using fourier descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9, pp. 696-690.

    Google Scholar 

  20. Ammar, M., Yoshido, Y., and Fukumura, T. (1986). A new effective approach for off-line verification of signatures by using pressure features. Proceedings of the Eighth International Conference on Pattern Recognition, pp. 566-569.

    Google Scholar 

  21. Guo, J.K., Doermann, D., and Rosenfeld, A. (1997). Local correspondence for detecting random forgeries. Proceedings of the International Conference on Document Analysis and Recognition, pp. 319-323.

    Google Scholar 

  22. Xu, A., Kalera, M.K., and Srihari, S.N. (2004). Learning strategies and classification methods for off-line signature verification. Proceedings of the Ninth International Workshop on Frontiers in Handwriting Recognition, pp. 161-166.

    Google Scholar 

  23. Zhang, B. and Srihari, S. (2003). Binary vector dissimilarity measures for handwriting identification. Proceedings of SPIE, Document Recognition and Retrieval X, pp. 155-166.

    Google Scholar 

  24. Joachims, T. (1998). Text categorization with support vector machines: learning with many relevant features. Proceedings of the European Conference on Machine Learning, pp. 137-142.

    Google Scholar 

  25. Osuna, E., Freund, R., and Girosi, F. (1997). Support vector machines: training and applications. Technical Report AIM-1602. MIT.

    Google Scholar 

  26. Boser, B., Guyon, I., and Vapnik, V. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Srihari, S.N., Huang, C., Srinivasan, H., Shah, V. (2007). Biometric and Forensic Aspects of Digital Document Processing. In: Chaudhuri, B.B. (eds) Digital Document Processing. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84628-726-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-726-8_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-501-1

  • Online ISBN: 978-1-84628-726-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics