Keywords
- Query Processing
- Relevance Feedback
- Document Image
- Query Term
- Query Expansion
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Cleverdon, C.W. (1984). Optimizing convenient online access to bibliographic databases. Information Services and Use, 4, pp. 37-47.
Salton, G. (1971). The SMART Retrieval System - Experiments in Automatic Document Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc.
Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Reading, MA: Addison-Wesley.
Ferber, R. (2003). Information Retrieval - Suchmodelle und Data-Mining-Verfahren für Textsammlungen und das Web. Germany: dpunkt.verlag.
Luhn, H.P. (1958). The automatic creation of literature abstracts. IBM Journal of Research and Development, 2, pp. 159-165.
Porter, M.F.(1980). An algorithm for suffix stripping. Program,14, pp. 130-137.
Porter, M.F. (2005). http://www.tartarus.org/martin/PorterStemmer/.
Porter, M.F. (2005). A small string processing language for creating stemmers. http://snowball.tartarus.org.
Porter, M.F. (1983). Information retrieval at the Sedgwick Museum. Information Technology: Research and Development, 2, pp. 169-186.
Lewis, D.D. and Spärck Jones, K. (1993). Natural language processing for information retrieval. Technical Report 307, University of Cambridge Computer Laboratory.
. Kupiec, J., Kimber, D., and Balasubramanian, V. (1994). Speech-based retrieval using semantic co-occurrence filtering. Proceedings of the Human Language Technology (HLT) Conference, US Advanced Projects Research Agency (ARPA), pp. 373-377.
Brauen, T.L. (1971). Document Vector Modification. Englewood Cliffs, NJ: Prentice Hall, pp. 456-484.
Salton, G. and Lesk, M. (1968). Computer evaluation of indexing and text processing. Journal of the ACM, 15, pp. 8-36.
Belkin, N.J. and Croft, W.B. (1987). Retrieval techniques. Annual Review of Information Science and Technology, 22, pp. 109-145.
Harman, D.K. (1992). Ranking Algorithms. Upper Saddle River, NJ: Prentice Hall, pp. 363-392.
Salton, G., Allen, J., and Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management,24, pp. 513-523.
Fuhr, N. and Buckley, C. (1991). A probabilistic learning approach for document indexing. ACM Transactions on Information Systems, 9, pp. 223-248.
Turtle, H.R. and Croft, W.B. (1991). Evaluation of an inference network-based retrieval model. ACM Transactions on Information Systems,9, pp. 187-222.
Rocchio, J.J. Relevance Feedback in Information Retrieval. Englewood Cliffs, NJ: Prentice Hall, pp. 313-323.
Wilson, R. and Martinez, T.R. (1997). Improved heterogeneous distance functions. Journal of Artificial Intelligence Research, 6, pp. 1-34.
Kemp, C. and Ramamohanarao, K. (2002). Long-term learning for web search enginges. In: T. Elomaa, H. Mannila, and H. Toivonen (Eds.). Proceedings of the Sixth European Conference of Principles of Data Mining and Knowledge Discovery (PKKD2002). Lecture Notes in Artificial Intelligence 2431, Helsinki, Finland, Springer, pp. 263-274.
Bhuyan, J.N., Deogun, J.S., and Raghavan, V.V. (1997). An adaptive information retrival system based on user-oriented clustering. ACM Transaction on Information Systems.
Gudivada, V.N., Raghavan, V.V., Grosky, W.I., and Kasanagottu, R. (1997). Information retrieval on the World Wide Web. IEEE Internet Computing, 1.
Friedman, S.R., Maceyak, J.A., and Weiss, S.F. (1971). A Relevance Feedback System Based on Document Transformations. Englewood Cliffs, NJ: Prentice Hall, pp. 447-455.
Salton, G. (1989). Automatic Text Processing: the Transformation, Analysis, and Retrieval of Information by Computer. Reading, MA: Addison-Wesley.
Savoy, J. and Vrajitoru, D. (1996). Evaluation of learning schemes used in information retrieval. Technical Report CR-I-95-02, Faculty of Sciences, University of Neuchâtel.
Rocchio, J.J. (1966). Document retrieval systems - optimization and evaluation. Ph.D. thesis. Cambridge, MA: Harvard Computational Laboratory.
Salton, G. and Buckley, C. (1990). Improving retrieval performance by relevance feedback. Journal of the ASIS, 41, pp. 288-297.
Kise, K., Junker, M., Dengel, A., and Matsumoto, K. (2001). Passage-based document retrieval as a tool for text mining with user's information needs. In: K.P. Jantke, A. Shinohara (Eds.). Discovery Science. Lecture Notes in Computer Science. Princeton, NJ: Springer, Volume 2226, pp. 155-169.
Callan, J.P. (1994). Passage-level evidence in document retrieval. In: W.B. Croft, C.J. Rijsbergen (Eds.). SIGIR. New York: ACM/Springer, pp. 302-310.
Kise, K., Mizuno, H., Yamaguchi, M., and Matsumoto, K. (1999). On the use of density distribution of keywords for automated generation of hypertext links from arbitrary parts of documents. ICDAR, pp. 301-304.
Kise, K., Junker, M., Dengel, A., and Matsumoto, K. (2001). Experimental evaluation of passage-based document retrieval. ICDAR. Silver Spring, MD: IEEE Computer Society, pp. 592-596.
Kurohashi, S., Shiraki, N., and Nagao, M. (1997). A method for detecting important descriptions of a word based on its density distribution in text. Transactions of Information Processing Society of Japan, 38, pp. 845-853 (In Japanese).
Kretser, O. and Moffat, A. (1999). Effective document presentation with a locality-based similarity heuristic. SIGIR. New York: ACM, pp. 113-120.
Kozima, H. and Furugori, T. (1994). Segmenting narrative text into coherent scenes. Literary and Linguistic Computing, 9, pp. 13-19.
Hust, A., Klink, S., Junker, M., and Dengel, A. (2003). Towards collaborative information retrieval: three approaches. Text Mining, pp. 97-112.
Klink, S. (2004). Improving document transformation techniques with collaborative learned term-based concepts. Reading and Learning, pp. 281-305.
Klink, S., Hust, A., and Junker, M. (2002). TCL - an approach for learning meanings of queries in information retrieval systems. Content Management -Digitale Inhalte als Bausteine einer vernetzten Welt, pp. 15-25.
Klink, S., Hust, A., Junker, M., and Dengel, A. (2002). Collaborative learning of term-based concepts for automatic query expansion. Proceedings of the 13th European Conference on Machine Learning (ECML 2002). Lecture Notes in Artificial Intelligence. Helsinki, Finland: Springer, Volume 2430, pp. 195-206.
Klink, S., Hust, A., Junker, M., and Dengel, A. (2002). Improving document retrieval by automatic query expansion using collaborative learning of term-based concepts. Proceedings of the Fifth International Workshop on Document Analysis Systems (DAS 2002). Lecture Notes in Computer Science. Princeton, NJ: Springer, Volume 2423, pp. 376-387.
Text REtrieval conference (TREC). (2005). http://trec.nist.gov/.
Klink, S. (2001). Query reformulation with collaborative concept-based expansion. Proceedings of the First International Workshop on Web Document Analysis (WDA 2001), Seattle, Washington, USA, pp. 19-22.
Pirkola, A. (1999). Studies on Linguistic Problems and Methods in Text Retrieval: The Effects of Anaphor and Ellipsis Resolution in Proximity Searching, and Translation and Query Structuring Methods in Cross-Language Retrieval. Doctoral dissertation. Finland: Department of Information Science, University of Tampere.
Jansen, B.J., Spink, A., and Saracevic, T. (2000). Real life, real users, and real needs: a study and analysis of user queries on the web. Information Processing and Management, 36, pp. 207-227.
Schütze, H. (1998). Automatic word sense discrimination. Computational Linguistics, 24, pp. 97-123.
Oh, J.H. and Choi, K.S. (2002). Word sense disambiguation using static and dynamic sense vectors. Proceedings of the 19th International Conference on Computational Linguistics, Taipei, Taiwan.
Peat, H.J. and Willet, P. (1991). The limitations of term cooccurrence data for query expansion in document retrieval systems. Journal of the American Society of Information Systems, 42, pp. 378-383.
Chen, J.N. and Chang, J.S. (1998). A concept-based adaptive approach to word sense disambiguation. Proceedings of 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics. Los Altos, CA: Morgan Kaufmann, Volume 1, pp. 237-243.
Guthriee, J.A., Guthrie, L., Aidinejad, H., and Wilks, Y. (1991). Subject-dependent cooccurrence and word sense disambiguation. Proceedings of 29th Annual Meeting of the Association for Computational Linguistics, pp. 146-152.
Kise, K., Junker, M., Dengel, A., and Matusmoto, K. (2004). Passage retrieval based on density distributions of terms and its applications to document retrieval and question answering. Reading and Learning, Adaptive Content Recognition. Lecture Notes in Computer Science. Springer, Volume 2956, pp. 306-327.
The ACM ditigal library. (2005). http://www.acm.org/dl/.
Kise, K., Junker, M., Dengel, A., and Matusmoto, K. (2004). Document image retieval in a question answering system for document images. Proceedings of the Sixth International Workshop on Document Analysis Systems (DAS 2004). Lecture Notes in Computer Science. Springer, Volume 3163, pp. 521-532.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag London Limited
About this chapter
Cite this chapter
Klink, S., Kise, K., Dengel, A., Junker, M., Agne, S. (2007). Document Information Retrieval. In: Chaudhuri, B.B. (eds) Digital Document Processing. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84628-726-8_16
Download citation
DOI: https://doi.org/10.1007/978-1-84628-726-8_16
Publisher Name: Springer, London
Print ISBN: 978-1-84628-501-1
Online ISBN: 978-1-84628-726-8
eBook Packages: Computer ScienceComputer Science (R0)
