Skip to main content

Advances in Graphics Recognition

  • Chapter

Part of the Advances in Pattern Recognition book series (ACVPR)

Keywords

  • Graphic Document
  • Graph Grammar
  • Musical Score
  • Engineering Drawing
  • Symbol Recognition

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nagy, G. (2000). Twenty years of document image analysis in PAMI. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, pp. 38-62

    CrossRef  Google Scholar 

  2. O'Gorman, L., Kasturi, R., (Eds.) (1997). Document Image Analysis. Silver Springer MD: IEEE Computer Society Press (1997)

    Google Scholar 

  3. Liu, W., Zhai, J., and Dori, D. (2002). Extended summary of the arc segmentation contest. In: D. Blostein and Y. Kwon (Eds.). Graphics Recognition: Algorithms and Applications. Berlin: Springer, Volume 2390 of LNCS, pp. 343-349.

    Google Scholar 

  4. Liu, W. (2004). Report of the arc segmentation contest. In: J. Lladós and Y.B. Kwon (Eds.). Graphics Recognition: Recent Advances and Perspectives. Berlin: Springer, Volume 3088 of LNCS, pp. 364-367.

    Google Scholar 

  5. Dori, D. (2000). Syntactic and semantic graphics recognition: the role of the object-process methodology. In: A. Chhabra and D. Dori (Eds.). Graphics Recognition: Algorithms and Systems. Berlin : Springer, Volume 1941 of LNCS, pp. 277-287.

    CrossRef  Google Scholar 

  6. Clavier, E., Masini, G., Delalandre, M., Rigamonti, M., Tombre, K., and Gardes, J. (2003). DocMining: a cooperative platform for heterogeneous document interpretation according to user-defined scenarios. Proceedings of Fifth IAPR Workshop on Graphics Recognition, Barcelona, Spain, pp. 21-32.

    Google Scholar 

  7. Couasnon, B. (2001). DMOS: a generic document recognition method, application to an automatic generator of musical scores, mathematical formulae and table structures recognition systems. Proceedings of Sixth International Conference on Document Analysis and Recognition, Seattle, USA, pp. 215-220.

    Google Scholar 

  8. Pridmore, T., Darwish, A., and Elliman, D. (2002). Interpreting line drawing images: a knowledge level perspective. In: D. Blostein and Y. Kwon (Eds.). Graphics Recognition: Algorithms and Applications. Berlin: Springer, Volume 2390 of LNCS, pp. 245-255.

    CrossRef  Google Scholar 

  9. Chhabra, A. and Phillips, I. (1996). The first international graphics recognition contest - dashed line recognition competition. In: R. Kasturi and K. Tombre (Eds.). Graphics Recognition: Methods and Applications. Berlin: Springer, Volume 1072 LNCS, pp. 270-300.

    Google Scholar 

  10. Chhabra, A. and Phillips, I. (1998). The second international graphics recognition contest - raster to vector conversion: a report. In: K. Tombre and A. Chhabra (Eds.). Graphics Recognition: Algorithms and Systems. Berlin: Springer,Volume 1389 LNCS, pp. 390-410.

    Google Scholar 

  11. Chhabra, A. and Philips, I. (2000). Performance evaluation of line drawing recognition systems. Proceedings of Fifteenth International Conference on Pattern Recognition, Barcelona, Spain, 4, pp. 864-869.

    Google Scholar 

  12. Valveny, E. and Dosch, P. (2004). Symbol recognition contest: a synthesis. In: J. Lladós and Y.B. Kwon (Eds.). Graphics Recognition: Recent Advances and Perspectives. Berlin: Springer, Volume 3088 LNCS, pp. 368-386.

    Google Scholar 

  13. Kasturi, R. and Tombre, K. (Eds.) (1996). Graphics Recognition - Methods and Applications. Volume 1072 of LNCS. Berlin: Springer.

    Google Scholar 

  14. Tombre, K. and Chhabra, A.K., (Eds.) (1998). Graphics Recognition - Algorithms and Systems. Berlin: Springer, Volume 1389 of Lecture Notes in Computer Science.

    Google Scholar 

  15. Chhabra, A. and Dori, D. (Eds.) (2000). Graphics Recognition - Recent Advances. Berlin: Springer, Volume 1941 of LNCS.

    Google Scholar 

  16. Blostein, D. and Kwon, Y. (Eds.) (2002). Graphics Recognition - Algorithms and Applications. Berlin: Springer, Volume 2390 of LNCS.

    MATH  Google Scholar 

  17. Lladós, J. and Kwon, Y. (Eds.). Graphics Recognition - Recent Advances and Perspectives. Berlin: Springer, Volume 3088 of LNCS.

    Google Scholar 

  18. Groen, F., Sanderson, A., and Schlag, F. (1985). Symbol recognition in electrical diagrams using probabilistic graph matching. Pattern Recognition Letters 3, pp. 343-350.

    CrossRef  Google Scholar 

  19. Habacha, A. (1991). Structural recognition of disturbed symbols using discrete relaxation. Proceedings of the First International Conference on Document Analysis and Recognition, Saint Malo, France, pp. 170-178.

    Google Scholar 

  20. Kim, S., Suh, J., and Kim, J. (1993). Recognition of logic diagrams by identifying loops and rectilinear polylines. Proceedings of the Second IAPR International Conference on Document Analysis and Recognition, ICDAR'93, Tsukuba, Japan, pp. 349-352.

    Google Scholar 

  21. Kuner, P. and Ueberreiter, B. (1988). Pattern recognition by graph matching. Combinatorial versus continuous optimization. International Journal of Pattern Recognition and Artificial Intelligence, 2, pp. 527-542.

    CrossRef  Google Scholar 

  22. Lee, S. (1992). Recognizing hand-written electrical circuit symbols with attributed graph matching. In: H. Baird, H. Bunke, and K. Yamamoto (Eds.). Structured Document Analysis. Berlin: Springer, pp. 340-358.

    Google Scholar 

  23. Okazaki, A., Kondo, T., Mori, K., Tsunekawa, S., and Kawamoto, E. (1988).An automatic circuit diagram reader with loop-structure-based symbol recognition. IEEE Transactions on PAMI, 10, pp. 331-341.

    Google Scholar 

  24. Antoine, D., Collin, S., and Tombre, K. (1999). Analysis of technical documents: the REDRAW system. In: H. Baird, H. Bunke, and K. Yamamoto (Eds.). Structured Document Image Analysis. Berlin: Springer, pp. 385-402.

    Google Scholar 

  25. Boatto, L., Consorti, V., Del Buono, M., Di Zenzo, S., Eramo, V., Espossito, A., Melcarne, F., Meucci, M., Morelli, A., Mosciatti, M., Scarci, S., and Tucci, M. (1992). An interpretation system for land register maps. Computer, 25, pp. 25-33.

    CrossRef  Google Scholar 

  26. Madej, D. (1991). An intelligent map-to-CAD conversion system. Proceedings of First. International Conference on Document Analysis and Recognition, Saint Malo, France, pp. 602-610.

    Google Scholar 

  27. Adam, S., Ogier, J., Cariou, C., Gardes, J., Mullot, R., and Lecourtier, Y. (2000). Combination of invariant pattern recognition primitives on technical documents. In: A. Chhabra, D. Dori (Eds.). Graphics Recognition - Recent Advances. Berlin: Springer, Volume 1941 of LNCS, pp. 238-245.

    CrossRef  Google Scholar 

  28. Arias, J., Lai, C., Surya, S., Kasturi, R., and Chhabra, A. (1995). Interpretation of telephone system manhole drawings. PRL, 16, pp. 355-369.

    Google Scholar 

  29. Hartog, J., Kate, T., and Gerbrands, J. (1996). Knowledge-based segmentation for automatic map interpretation. In: R. Kasturi, K. Tombre (Eds.). Graphics Recognition: Methods and Applications. Berlin: Springer, Volume 1072 of LNCS.

    Google Scholar 

  30. De Stefano, C., Tortorella, F., and Vento, M. (1995). An entropy based method for extracting robust binary templates. Machine Vision and Applications, 8, pp. 173-178.

    CrossRef  Google Scholar 

  31. Myers, G., Mulgaonkar, P., Chen, C., DeCurtins, J., and Chen, E. (1996). Verification-based approach for automated text and feature extraction from raster-scanned maps. In: R. Kasturi, K. Tombre (Eds.). Graphics Recognition: Methods and Applications. Berlin: Springer, pp. 190-203.

    Google Scholar 

  32. Reiher, E., Li, Y., Donne, V., Lalonde, M., Hayne, C., and Zhu, C. (1996). A system for efficient and robust map symbol recognition. Proceedings of the Thirteenth IAPR International Conference on Pattern Recognition, Viena, Austria, Volume 3, pp. 783-787.

    Google Scholar 

  33. Samet, H. and Soffer, A. (1996). Marco: map retrieval by content. IEEE Transactions on PAMI, 18, pp. 783-797.

    Google Scholar 

  34. Levachkine, S., Velázquez, A., Alexandrov, V., and Kharinov, M. (2002). Semantic analysis and recognition of raster-scanned color cartographic images. In: D. Blostein, Y. Kwon (Eds.). Graphics Recognition: Algorithms and Applications. Berlin: Springer, Volume 2390 of LNCS, pp. 178-189.

    CrossRef  Google Scholar 

  35. Joseph, S. and Pridmore, T.(1992). Knowledge-directed interpretation of mechanical engineering drawings. IEEE Transactions on PAMI,14, pp. 928-940.

    Google Scholar 

  36. Vaxiviere, P. and Tombe, K. (1992). Celesstin: CAD conversion of mechanical drawings. Computer, 25, pp. 46-54.

    CrossRef  Google Scholar 

  37. Tombre, K. and Dori, D. (1997). Interpretation of engineering drawings. In: H. Bunke, P. Wang (Eds.). Handbook of Character Recognition and Document Image Analysis. Singapore: World Scientific, pp. 457-484.

    Google Scholar 

  38. Boose, M., Shema, D., and Baum, L. (2004). Automatic generation of layered illustrated parts drawings for advanced technical data systems. In: J. Lladós, Y.B. Kwon (Eds.). Graphics Recognition: Recent Advances and Perspectives. Berlin: Springer, Volume 3088 of LNCS, pp. 109-115.

    Google Scholar 

  39. Ah-Soon, C. and Tombre, K. (2001). Architectural symbol recognition using a network of constraints. Pattern Recognition Letters, 22, pp. 231-248.

    CrossRef  MATH  Google Scholar 

  40. Aoki, Y., Shio, A., Arai, H., and Odaka, K. (1996). A prototype system for interpreting hand-sketched floor plans. Proceedings of the Thirteenth International Conference on Pattern Recognition, Vienna, Austria, pp. 747-751.

    Google Scholar 

  41. Leclercq, P. (2004). Absent sketch interface in architectural engineering. In: J. Lladós and Y.B. Kwon (Eds.). Graphics Recognition: Recent Advances and Perspectives. Berlin: Springer, Volume 3088 of LNCS, pp. 351-362.

    Google Scholar 

  42. Park, Y. and Kwon, Y. (2002). An effective vector extraction method on architectural imaging using drawing characteristics. In: D. Blostein, Y. Kwon (Eds.). Graphics Recognition: Algorithms and Applications. Berlin: Springer, Volume 2390 of LNCS, pp. 299-309.

    CrossRef  Google Scholar 

  43. Sánchez, G., Valveny, E., Lladós, J., Mas, J., and Lozano, N. (2004). A plat-form to extract knowledge from graphic documents. Application to an architectural sketch understanding scenario. In: S. Marinai, A. Dengel (Eds.). Document Analysis Systems VI. Berlin: Springer, Volume 3163 of LNCS, pp. 349-365.

    Google Scholar 

  44. Blostein, D. and Baird, H. (1992). A critical survey of music image analysis. In: H. Baird, H. Bunke, K. Yamamoto (Eds.). Structured Document Image Analysis. Berlin: Springer, pp. 405-434.

    Google Scholar 

  45. Ng, K. (2002). Music manuscript tracing. In: D. Blostein, Y. Kwon (Eds.). Graphics Recognition: Algorithms and Applications. Berlin: Springer, Volume 2390 of LNCS, pp. 330-342.

    CrossRef  Google Scholar 

  46. Fahmy, H. and Blonstein, D. (1993). A graph grammar programming stylefor recognition of music notation. Machine Vision and Applications,6, pp. 83-99.

    CrossRef  Google Scholar 

  47. Yadid-Pecht, O., Gerner, M., Dvir, L., Brutman, E., and Shimony, U. (1996). Recognition of handwritten musical notes by a modified neocognitron. Machine Vision and Applications, 9, pp. 65-72.

    Google Scholar 

  48. Chang, M. and Chen, S. (2001). Deformed trademark retrieval based on 2d pseudo-hidden Markov model. Pattern Recognition, 34, pp. 953-967.

    CrossRef  MATH  Google Scholar 

  49. Cortelazzo, G., Mian, G., Vezzi, G., and Zamperoni, P. (1994). Trademark shapes description by string matching techniques. Pattern Recognition, 27, pp. 1005-1018.

    CrossRef  Google Scholar 

  50. Doermann, D., Rivlin, E., and Weiss, I. (1996). Applying algebraic and differential invariants for logo recognition. Machine Vision and Applications, 9, pp. 73-86.

    Google Scholar 

  51. Francesconi, E., Frasconi, P, Gori, M., Mariani, S., Sheng, J., Soda, G., and Sperduti, A. (1998). Logo recognition by recursive neural networks. In: K. Tombre and A. Chhabra (Eds.). Graphics Recognition - Algorithms and Systems. Berlin: Springer, Volume 1389 of LNCS.

    Google Scholar 

  52. Soffer, A. and Samet, H. (1998). Using negative shape features for logo similarity matching. Proceedings of the Fourteenth International Conference on Pattern Recognition, 1, pp. 571-573.

    CrossRef  Google Scholar 

  53. Zanibbi, R., Blostein, D., and Cordy, J. (2004). A survey of table recognition. International Journal on Document Analysis and Recognition, 7, pp. 1-16.

    Google Scholar 

  54. Gross, M. (1996). The electronic cocktail napkin - working with diagrams. Design Studies,17, pp. 53-69.

    CrossRef  Google Scholar 

  55. Gross, M. and Do, E. (2000). Drawing on the back of an envelope: a frame-work for interacting with application programs by freehand drawing. Computers and Graphics, 24, pp. 835-849.

    CrossRef  Google Scholar 

  56. Tombre, K., Ah-Soon, C., Dosch, P., Masini, G., and Tabbone, S. (2000). Stable and robust vectorization: how to make the right choices. In: A. Chhabra, D. Dori (Eds.). Graphics Recognition: Recent Advances. Berlin: Springer, Volume 1941 of LNCS, pp. 3-18.

    CrossRef  Google Scholar 

  57. Ramer, U. (1972). An iterative procedure for the polygonal approximation of planar curves. Computer Graphics and Image Processing, 1, pp. 244-256.

    CrossRef  Google Scholar 

  58. Ablameyko, S., Bereishik, V., and Paramonova, N. (1994). Vectorization and representation of largesize 2-D line-drawing images. Journal of Visual Communication and Image Representation, 5, pp. 245-254.

    CrossRef  Google Scholar 

  59. Nagasamy, V. and Langrana, N. (1990). Engineering drawing processing and vectorisation system. Computer Vision, Graphics and Image Processing, 49, pp. 379-397.

    CrossRef  Google Scholar 

  60. Hilaire, X. and Tombre, K. (2002). Improving the accuracy of skeleton-based vectorization. In: D. Blostein, Y. Kwon, (Eds.). Graphics Recognition: Algorithms and Applications. Berlin: Springer, Volume 2390 of LNCS, pp. 273-288.

    CrossRef  Google Scholar 

  61. Han, C. and Fan, K. (1994). Skeleton generation of engineering drawings via contour matching. Pattern Recognition, 27, pp. 261-275.

    CrossRef  Google Scholar 

  62. Dori, D. and Liu, W. (1999). Sparse pixel vectorization: an algorithm and its performance evaluation. IEEE Transactions on PAMI, 21, pp. 202-215.

    Google Scholar 

  63. Elliman, D. (2000). A really useful vectorization algorithm. In: A. Chhabra and D. Dori (Eds.). Graphics Recognition: Algorithms and Systems. Berlin: Springer, Volume 1941 of LNCS, pp. 19-27.

    CrossRef  Google Scholar 

  64. Elliman, D. (2002). TIF2VEC, an algorithm for arc segmentation in engineering drawings. In: D. Blostein and Y. Kwon (Eds.). Graphics Recognition: Algorithms and Applications. Berlin: Springer, Volume 2390 of LNCS, pp. 351-358.

    CrossRef  Google Scholar 

  65. Dosch, P., Masini, G., and Tombre, K. (2000). Improving arc detection in graphics recognition. Proceedings of the Fifteenth International Conference on Pattern Recognition, Barcelona, Spain, 2, pp. 243-246.

    Google Scholar 

  66. Hilaire, X. (2002). RANVEC and the arc segmentation contest. In: D. Blostein and Y. Kwon (Eds.). Graphics Recognition: Algorithms and Applications. Berlin: Springer, Volume 2390 of LNCS, pp. 359-364.

    CrossRef  Google Scholar 

  67. Lladós, J., Martí, E., and Villanueva, J. (2001). Symbol recognition by error-tolerant subgraph matching between region adjacency graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, pp. 1137-1143.

    CrossRef  Google Scholar 

  68. Fletcher, L. and Kasturi, R. (1988). A robust algorithm for text string separation from mixed text/graphics images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, pp. 910-918.

    CrossRef  Google Scholar 

  69. Tombre, K., Tabbone, S., Pelissier, L., and Dosch, P. (2002). Document analysis and world wide web. In: D. Lopresti, J. Hu, and R. Kashi (Eds.). Document Analysis Systems V. Berlin: Springer, Volume 2423 of LNCS, pp. 200-211.

    CrossRef  Google Scholar 

  70. Lladós, J., Valveny, E., Sánchez, G., and Martí, E. (2002). Symbol recognition: current advances and perspectives. In: D. Blostein and Y. Kwon (Eds.). Graphics Recognition: Algorithms and Applications. Berlin: Springer, Volume 2390 of LNCS, pp. 104-127.

    CrossRef  Google Scholar 

  71. Collin, S. and Colnet, D.(1994). Syntactic analysis of technical drawing dimensions. International Journal of Pattern Recognition and Artificial Intelligence, 8, pp. 1131-1148.

    CrossRef  Google Scholar 

  72. Bunke, H. (1982). Attributed programmed graph grammars and their application to schematic diagram interpretation. IEEE Transactions on PAMI, 4, pp. 574-582.

    MATH  Google Scholar 

  73. Tombre, K. and Lamiroy, B. (2003). Graphics recognition from re-engineering to retrieval. Proceedings of Seventh International Conference on Document Analysis and Recognition, Edinburgh, Scotland, pp. 148-155.

    Google Scholar 

  74. Muller, S. and Rigoll, G. (2000). Engineering drawing database retrieval using statistical pattern spotting techniques. In: A. Chhabra and D. Dori (Eds.). Graphics Recognition: Recent Advances. Berlin: Springer, Volume 1941 of LNCS, pp. 246-255.

    CrossRef  Google Scholar 

  75. Fonseca, M. and Jorge, J. (2003). Towards content-based retrieval of technical drawings through highdimensional indexing. Computers and Graphics, 27, pp. 61-69.

    CrossRef  Google Scholar 

  76. Doermann, D. (1998). The indexing and retrieval of document images: a survey. Technical Report CS-TR-3876, University of Maryland.

    Google Scholar 

  77. Tabbone, S., Wendling, L., and Tombre, K. (2003). Matching of graphical symbols in line-drawing images using angular signature information. International Journal on Document Analysis and Recognition, 6, pp. 115-125.

    CrossRef  Google Scholar 

  78. Dosch, P. and Lladós, J. (2003). Vectorial signatures for symbol discrimination. Proceedings of Fifth IAPR Workshop on Graphics Recognition, Barcelona, Spain.

    Google Scholar 

  79. Lorenz, O. and Monagan, G. (1995). Automatic indexing for storage and retrieval of line drawings. Storage and Retrieval for Image and Video Databases (SPIE), pp. 216-227.

    Google Scholar 

  80. Sánchez, G. and Lladós, J. (2004). Syntactic models to represent perceptually regular repetitive patterns in graphic documents. In: J. Lladós and Y.B. Kwon (Eds.). Graphics Recognition: Recent Advances and Perspectives. Berlin: Springer, Volume 3088 of LNCS, pp. 166-175.

    Google Scholar 

  81. Blostein, D., Zanibbi, R., Nagy, G., and Harrap, R. (2003). Document representations. Proceedings of Fifth IAPR Workshop on Graphics Recognition, Barcelona, Spain, pp. 3-20.

    Google Scholar 

  82. Clavier, E., Masini, G., Delalandre, M., Rigamonti, M., Tombre, K., and Gardes, J. (2004). DocMining: a cooperative platform for heterogeneous document interpretation according to user-defined scenarios. In: J. Lladós and Y.B. Kwon (Eds.). Graphics Recognition: Recent Advances and Perspectives. Berlin: Springer, Volume 3088 of LNCS, pp. 13-24.

    Google Scholar 

  83. Roussel, N., Hitz, O., and Ingold, R. (2001). Web-based cooperative document understanding. Proceedings of Sixth International Conference on Document Analysis and Recognition, Seattle, USA, pp. 368-373.

    Google Scholar 

  84. Liu, W. (2004). Online graphics recognition: state-of-the-art. In: J. Lladós and Y.B. Kwon (Eds.). Graphics Recognition: Recent Advances and Perspectives. Berlin: Springer, Volume 3088 of LNCS, pp. 291-304.

    Google Scholar 

  85. Davis, R. (2002). Understanding in design: overview of work at the mit lab. 2002 AAAI Spring Symposium Sketch Understanding.

    Google Scholar 

  86. Landay, J. and Myers, B. (2001). Sketching interfaces: toward more human interface design. IEEE Computer, 34, pp. 56-64.

    Google Scholar 

  87. Jorge, J. and Glinert, E. (1995). Online parsing of visual languages using adjacency grammars. Proceedings of the Eleventh International IEEE Symposium on Visual Languages, pp. 250-257.

    Google Scholar 

  88. Caetano, A., Goulart, N., Fonseca, M., and Jorge, J. (2002). Javasketchit: issues in sketching the look of user interfaces. 2002 AAAI Spring Symposium Sketch Understanding.

    Google Scholar 

  89. Juchmes, R., Leclercq, P., and Azar, S. (2004). A multi-agent system for the interpretation of architectural sketches. Proceedings of Eurographics Workshop on Sketch-Based Interfaces and Modeling, Grenoble, France.

    Google Scholar 

  90. Piquer, A. (2003). Percepción Artificial de Dibujos Lineales. PhD thesis, Universitat Jaume I.

    Google Scholar 

  91. Hammond, T. and Davis, R. (2002). Tahuti: a geometrical sketch recognition system for uml class diagrams. 2002 AAAI Spring Symposium Sketch Understanding.

    Google Scholar 

  92. Fonseca, M. (2004). Sketch-based retrieval in large sets of drawings. PhD thesis, Instituto Superior Técnico, Technical University of Lisbon.

    Google Scholar 

  93. Rigoll, G. and Muller, S. (2000). Graphics-based retrieval of color image databases using hand-drawn query sketches. In: A. Chhabra and D. Dori (Eds.). Graphics Recognition: Algorithms and Systems. Berlin: Springer, Volume 1941 of LNCS, pp. 256-265.

    CrossRef  Google Scholar 

  94. Liu, W., Xiangyu, J., and Zhengxing, S.: (2002). Sketch-based user interface for inputting graphic objects on small screen device. In: D. Blostein and Y. Kwon (Eds.). Graphics Recognition: Algorithms and Applications. Berlin: Springer, Volume 2390 of LNCS, pp. 67-80.

    Google Scholar 

  95. Liu, W. and Dori, D. (1998). A proposed scheme for performance evaluation of graphics/text separation algorithms. In: K. Tombre and A. Chhabra (Eds.). Graphics Recognition: Algorithms and Systems. Berlin: Springer, Volume 1389 of LNCS, pp. 359-371.

    Google Scholar 

  96. Phillips, I. and Chhabra, A. (1999). Empirical performance evaluation of graphics recognition systems. IEEE Transactions on PAMI, 21, pp. 849-870.

    Google Scholar 

  97. Liu, W. and Dori, D. (1997). A protocol for performance evaluation of line detection algorithms. Machine Vision and Applications, 9, pp. 240-250.

    CrossRef  Google Scholar 

  98. Aksoy, S., Ye, M., Schauf, M., Song, M., Wang, Y., Haralick, R., Parker, J., Pivovarov, J., Royko, D., Sun, C., and Farneboock, G. (2000). Algorithm performance contest. Proceedings of the Fifteenth International Conference on Pattern Recognition, Barcelona, Spain, Volume 4, pp. 870-876.

    Google Scholar 

  99. Lopresti, D. and Nagy, G. (2002). Issues in ground-truthing graphic documents. In: D. Blostein and Y. Kwon (Eds.). Graphics Recognition: Algorithms and Applications. Berlin: Springer, Volume 2390 of LNCS, pp. 46-66.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Lladós, J. (2007). Advances in Graphics Recognition. In: Chaudhuri, B.B. (eds) Digital Document Processing. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84628-726-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-726-8_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-501-1

  • Online ISBN: 978-1-84628-726-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics