Skip to main content

Magnetic Resonance Imaging of the Myocardium

  • Chapter
Cardiovascular Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffmann U, Globits S, Schima W, et al. Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol 2003;92(7):890–895.

    PubMed  Google Scholar 

  2. Semelka RC, Kelekis NL, Thomasson D, Brown MA, Laub GA. HASTE MR imaging: description of technique and preliminary results in the abdomen. J Magn Reson Imaging 1996;6(4):698–699.

    PubMed  CAS  Google Scholar 

  3. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 2001;219(1):264–269.

    PubMed  CAS  Google Scholar 

  4. Mortele KJ, Mergo PJ, Williams WF. Lipomatous hypertrophy of the atrial septum: diagnosis with fat suppressed MR imaging. J Magn Reson Imaging 1998;8(5):1172–1174.

    PubMed  CAS  Google Scholar 

  5. Nadra I, Dawson D, Schmitz SA, Punjabi PP, Nihoyannopoulos P. Lipomatous hypertrophy of the interatrial septum: a commonly misdiagnosed mass often leading to unnecessary cardiac surgery. Heart 2004;90(12):e66.

    PubMed  CAS  Google Scholar 

  6. Sakarya ME, Etlik O, Sakarya N, et al. MR findings in cardiac hydatid cyst. Clin Imaging 2002;26(3):170–172.

    PubMed  Google Scholar 

  7. Miralles A, Bracamonte L, Pavie A, et al. Cardiac echinococcosis. Surgical treatment and results. J Thorac Cardiovasc Surg 1994;107(1):184–190.

    PubMed  CAS  Google Scholar 

  8. Pennell DJ, Sechtem UP, Higgins CB, et al. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J 2004;25(21):1940–1965.

    PubMed  Google Scholar 

  9. Bellenger NG, Davies LC, Francis JM, Coats AJ, Pennell DJ. Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2000;2(4):271–278.

    PubMed  CAS  Google Scholar 

  10. Bellenger NG, Rajappan K, Rahman SL, et al. Effects of carvedilol on left ventricular remO’Delling in chronic stable heart failure: a cardiovascular magnetic resonance study. Heart 2004;90(7):760–764.

    PubMed  CAS  Google Scholar 

  11. Osterziel KJ, Strohm O, Schuler J, et al. Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 1998;351(9111):1233–1237.

    PubMed  CAS  Google Scholar 

  12. Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 2002;90(1):29–34.

    PubMed  Google Scholar 

  13. Pohost GM. Is 31P-NMR spectroscopic imaging a viable approach to assess myocardial viability? Circulation 1995;92(1):9–10.

    PubMed  CAS  Google Scholar 

  14. Rehr RB, Fuhs BE, Lee F, Tatum JL, Hirsch JI, Quint R. Differentiation of reperfused-viable (stunned) from reperfused-infarcted myocardium at 1 to 3 days postreperfusion by in vivo phosphorus-31 nuclear magnetic resonance spectroscopy. Am Heart J 1991;122(6):1571–1582.

    PubMed  CAS  Google Scholar 

  15. Rehr RB, Tatum JL, Hirsch JI, Quint R, Clarke G. Reperfusedviable and reperfused-infarcted myocardium: differentiation with in vivo P-31 MR spectroscopy. Radiology 1989;172(1):53–58.

    PubMed  CAS  Google Scholar 

  16. Wroblewski LC, Aisen AM, Swanson SD, Buda AJ. Evaluation of myocardial viability following ischemic and reperfusion injury using phosphorus 31 nuclear magnetic resonance spectroscopy in vivo. Am Heart J 1990;120(1):31–39.

    PubMed  CAS  Google Scholar 

  17. Yabe T, Mitsunami K, Inubushi T, Kinoshita M. Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy. Circulation 1995;92(1):15–23.

    PubMed  CAS  Google Scholar 

  18. Bottomley PA, Weiss RG. Non-invasive magnetic-resonance detection of creatine depletion in non-viable infarcted myocardium. Lancet 1998;351(9104):714–718.

    PubMed  CAS  Google Scholar 

  19. Cannon PJ, Maudsley AA, Hilal SK, Simon HE, Cassidy F. Sodium nuclear magnetic resonance imaging of myocardial tissue of dogs after coronary artery occlusion and reperfusion. J Am Coll Cardiol 1986;7(3):573–579.

    PubMed  CAS  Google Scholar 

  20. Kim RJ, Judd RM, Chen EL, Fieno DS, Parrish TB, Lima JA. Relationship of elevated 23Na magnetic resonance image intensity to infarct size after acute reperfused myocardial infarction. Circulation 1999;100(2):185–192.

    PubMed  CAS  Google Scholar 

  21. Kim RJ, Lima JA, Chen EL, et al. Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction. Potential to assess myocardial viability. Circulation 1997;95(7):1877–1885.

    PubMed  CAS  Google Scholar 

  22. Fieno DS, Kim RJ, Rehwald WG, Judd RM. Physiological basis for potassium (39K) magnetic resonance imaging of the heart. Circ Res 1999;84(8):913–920.

    PubMed  CAS  Google Scholar 

  23. Kim RJ, Hillenbrand HB, Judd RM. Evaluation of myocardial viability by MRI. Herz 2000;25(4):417–430.

    PubMed  CAS  Google Scholar 

  24. Been M, Smith MA, Ridgway JP, et al. Serial changes in the T1 magnetic relaxation parameter after myocardial infarction in man. Br Heart J 1988;59(1):1–8.

    PubMed  CAS  Google Scholar 

  25. Johnston DL, Homma S, Liu P, et al. Serial changes in nuclear magnetic resonance relaxation times after myocardial infarction in the rabbit: relationship to water content, severity of ischemia, and histopathology over a six-month period. Magn Reson Med 1988;8(4):363–379.

    PubMed  CAS  Google Scholar 

  26. Higgins CB, Herfkens R, Lipton MJ, et al. Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am J Cardiol 1983;52(1):184–188.

    PubMed  CAS  Google Scholar 

  27. Baer FM, Theissen P, Schneider CA, et al. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol 1998;31(5):1040–1048.

    PubMed  CAS  Google Scholar 

  28. Cwajg JM, Cwajg E, Nagueh SF, et al. End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation: relation to rest-redistribution Tl-201 tomography and dobutamine stress echocardiography. J Am Coll Cardiol 2000;35(5):1152–1161.

    PubMed  CAS  Google Scholar 

  29. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1985;72(6 Pt 2):V123–135.

    PubMed  CAS  Google Scholar 

  30. Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium.” J Am Coll Cardiol 1986;8(6):1467–1470

    PubMed  CAS  Google Scholar 

  31. Bolli R. Myocardial “stunning” in man. Circulation 1992;86(6):1671–1691

    PubMed  CAS  Google Scholar 

  32. Vanoverschelde JL, Wijns W, Depre C, et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 1993;87(5):1513–1523.

    PubMed  CAS  Google Scholar 

  33. Buxton DB. Dysfunction in collateral-dependent myocardium. Hibernation or repetitive stunning? Circulation 1993;87(5):1756–1758.

    PubMed  CAS  Google Scholar 

  34. Haendchen RV, Corday E, Torres M, Maurer G, Fishbein MC, Meerbaum S. Increased regional end-diastolic wall thickness early after reperfusion: a sign of irreversibly damaged myocardium. J Am Coll Cardiol 1984;3(6):1444–1453.

    PubMed  CAS  Google Scholar 

  35. Dendale PA, Franken PR, Waldman GJ, et al. Low-dosage dobutamine magnetic resonance imaging as an alternative to echocardiography in the detection of viable myocardium after acute infarction. Am Heart J 1995;130(1):134–140.

    PubMed  CAS  Google Scholar 

  36. Gunning MG, Anagnostopoulos C, Knight CJ, et al. Comparison of 201Tl, 99mTc-tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium. Circulation 1998;98(18):1869–1874.

    PubMed  CAS  Google Scholar 

  37. Sandstede JJ, Bertsch G, Beer M, et al. Detection of myocardial viability by low-dose dobutamine Cine MR imaging. Magn Reson Imaging 1999;17(10):1437–1443.

    PubMed  CAS  Google Scholar 

  38. Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 1999;99(6):763–770.

    PubMed  CAS  Google Scholar 

  39. Kim RJ, Manning WJ. Viability assessment by delayed enhancement cardiovascular magnetic resonance: will low-dose dobutamine dull the shine? Circulation 2004;109(21):2476–2479.

    PubMed  Google Scholar 

  40. Sansoy V, Glover DK, Watson DD, et al. Comparison of thallium-201 resting redistribution with technetium-99m-sestamibi uptake and functional response to dobutamine for assessment of myocardial viability. Circulation 1995;92(4):994–1004.

    PubMed  CAS  Google Scholar 

  41. Rehr RB, Peshock RM, Malloy CR, et al. Improved in vivo magnetic resonance imaging of acute myocardial infarction after intravenous paramagnetic contrast agent administration. Am J Cardiol 1986;57(10):864–868.

    PubMed  CAS  Google Scholar 

  42. McNamara MT, Tscholakoff D, Revel D, et al. Differentiation of reversible and irreversible myocardial injury by MR imaging with and without gadolinium-DTPA. Radiology 1986;158(3):765–769.

    PubMed  CAS  Google Scholar 

  43. Eichstaedt HW, Felix R, Dougherty FC, Langer M, Rutsch W, Schmutzler H. Magnetic resonance imaging (MRI) in different stages of myocardial infarction using the contrast agent gadolinium-DTPA. Clin Cardiol 1986;9(11):527–535.

    PubMed  CAS  Google Scholar 

  44. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999;100(19):1992–2002.

    PubMed  CAS  Google Scholar 

  45. Simonetti OP, Kim RJ, Fieno DS, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology 2001;218(1):215–223.

    PubMed  CAS  Google Scholar 

  46. Wagner A, Mahrholdt H, Holly TA, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 2003;361(9355):374–379.

    PubMed  Google Scholar 

  47. Shan K, Constantine G, Sivananthan M, Flamm SD. Role of cardiac magnetic resonance imaging in the assessment of myocardial viability. Circulation 2004;109(11):1328–1334.

    PubMed  Google Scholar 

  48. Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM. Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 2000;36(6):1985–1991.

    PubMed  CAS  Google Scholar 

  49. Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 2002;105(2):224–229.

    PubMed  Google Scholar 

  50. Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 2001;357(9249):21–28.

    PubMed  CAS  Google Scholar 

  51. Klein C, Nekolla SG, Bengel FM, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 2002;105(2):162–167.

    PubMed  Google Scholar 

  52. Knuesel PR, Nanz D, Wyss C, et al. Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation 2003;108(9):1095–1100.

    PubMed  Google Scholar 

  53. Ricciardi MJ, Wu E, Davidson CJ, et al. Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-MB elevation. Circulation 2001;103(23):2780–2783.

    PubMed  CAS  Google Scholar 

  54. Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA. Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 1995;92(5):1117–1125.

    PubMed  CAS  Google Scholar 

  55. Kim RJ, Choi KM, Judd RM. Assessment of myocardial viability by contrast enhancement. In: Higgins CB, de Roos A, eds. Cardiovascular MRI & MRA. Philadelphia: Lippincott Williams & Wilkins, 2003:209–237.

    Google Scholar 

  56. Fieno DS, Hillenbrand HB, Rehwald WG, et al. Infarct resorption, compensatory hypertrophy, and differing patterns of ventricular remodeling following myocardial infarctions of varying size. J Am Coll Cardiol 2004;43(11):2124–2131.

    PubMed  Google Scholar 

  57. Shah DJ, Kim HW, Elliott M, et al. Contrast MRI predicts reverse remodeling and contractile improvement in akinetic thinned myocardium. Circulation 2003;108(suppl IV):IV697.

    Google Scholar 

  58. Kim RJ, Shah DJ. Fundamental concepts in myocardial viability assessment revisited: when knowing how much is “alive” is not enough. Heart 2004;90(2):137–140

    PubMed  CAS  Google Scholar 

  59. Lieberman AN, Weiss JL, Jugdutt BI, et al. Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 1981;63(4):739–746.

    PubMed  CAS  Google Scholar 

  60. Mahrholdt H, Wagner A, Parker M, et al. Relationship of contractile function to transmural extent of infarction in patients with chronic coronary artery disease. J Am Coll Cardiol 2003;42(3):505–512.

    PubMed  Google Scholar 

  61. Nelson C, McCrohon J, Khafagi F, Rose S, Leano R, Marwick TH. Impact of scar thickness on the assessment of viability using dobutamine echocardiography and thallium singlephoton emission computed tomography: a comparison with contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 2004;43(7):1248–1256.

    PubMed  Google Scholar 

  62. Christian TF, Gibbons RJ, Gersh BJ. Effect of infarct location on myocardial salvage assessed by technetium-99m isonitrile. J Am Coll Cardiol 1991;17(6):1303–1308.

    PubMed  CAS  Google Scholar 

  63. Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico (GISSI). Lancet 1986;1(8478):397–402.

    Google Scholar 

  64. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 1988;2(8607):349–360.

    Google Scholar 

  65. Grines CL, Browne KF, Marco J, et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. The Primary Angioplasty in Myocardial Infarction Study Group. N Engl J Med 1993;328(10):673–679.

    PubMed  CAS  Google Scholar 

  66. Zijlstra F, de Boer MJ, Hoorntje JC, Reiffers S, Reiber JH, Suryapranata H. A comparison of immediate coronary angioplasty with intravenous streptokinase in acute myocardial infarction. N Engl J Med 1993;328(10):680–684.

    PubMed  CAS  Google Scholar 

  67. Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM. Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 2001;104(10):1101–1107.

    PubMed  CAS  Google Scholar 

  68. Gerber BL, Garot J, Bluemke DA, Wu KC, Lima JA. Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 2002;106(9):1083–1089.

    PubMed  Google Scholar 

  69. Beek AM, Kuhl HP, Bondarenko O, et al. Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 2003;42(5):895–901.

    PubMed  Google Scholar 

  70. Kitagawa K, Sakuma H, Hirano T, Okamoto S, Makino K, Takeda K. Acute myocardial infarction: myocardial viability assessment in patients early thereafter comparison of contrast-enhanced MR imaging with resting (201)Tl SPECT. Single photon emission computed tomography. Radiology 2003;226(1):138–144.

    PubMed  Google Scholar 

  71. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343(20):1445–1453.

    PubMed  CAS  Google Scholar 

  72. Schvartzman PR, Srichai MB, Grimm RA, et al. Nonstress delayed-enhancement magnetic resonance imaging of the myocardium predicts improvement of function after revascularization for chronic ischemic heart disease with left ventricular dysfunction. Am Heart J 2003;146(3):535–541.

    PubMed  Google Scholar 

  73. Bonow RO. Identification of viable myocardium. Circulation 1996;94(11):2674–2680.

    PubMed  CAS  Google Scholar 

  74. Wellnhofer E, Olariu A, Klein C, et al. Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 2004;109(18):2172–2174.

    PubMed  Google Scholar 

  75. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999;353(9146):9–13.

    Google Scholar 

  76. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999;353(9169):2001–2007.

    Google Scholar 

  77. Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 2001;344(22):1651–1658.

    PubMed  CAS  Google Scholar 

  78. Bristow MR, Gilbert EM, Abraham WT, et al. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation 1996;94(11):2807–2816.

    PubMed  CAS  Google Scholar 

  79. Bristow MR, O’Connell JB, Gilbert EM, et al. Dose-response of chronic beta-blocker treatment in heart failure from either idiopathic dilated or ischemic cardiomyopathy. Bucindolol Investigators. Circulation 1994;89(4):1632–1642.

    PubMed  CAS  Google Scholar 

  80. Lechat P, Packer M, Chalon S, Cucherat M, Arab T, Boissel JP. Clinical effects of beta-adrenergic blockade in chronic heart failure: a meta-analysis of double-blind, placebo-controlled, randomized trials. Circulation 1998;98(12):1184–1191.

    PubMed  CAS  Google Scholar 

  81. Randomised, placebo-controlled trial of carvedilol in patients with congestive heart failure due to ischaemic heart disease. Australia/New Zealand Heart Failure Research Collaborative Group. Lancet 1997;349(9049):375–380.

    Google Scholar 

  82. Cleland JG, Pennell DJ, Ray SG, et al. Myocardial viability as a determinant of the ejection fraction response to carvedilol in patients with heart failure (CHRISTMAS trial): randomised controlled trial. Lancet 2003;362(9377):14–21.

    PubMed  CAS  Google Scholar 

  83. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med 2001;344(22):1659–1667.

    Google Scholar 

  84. Bello D, Shah DJ, Farah GM, et al. Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing betablocker therapy. Circulation 2003;108(16):1945–1953.

    PubMed  CAS  Google Scholar 

  85. Polimeni PI. Extracellular space and ionic distribution in rat ventricle. Am J Physiol 1974;227(3):676–683.

    PubMed  CAS  Google Scholar 

  86. Klem I, Sechtem U. [Is coronary magnetic resonance angiography already a clinically useful diagnostic tool?]. Dtsch Med Wochenschr 2004;129(50):2733–2738.

    PubMed  CAS  Google Scholar 

  87. Langerak SE, Vliegen HW, Jukema JW, et al. Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation 2003;107(11):1502–1508.

    PubMed  CAS  Google Scholar 

  88. Hundley WG, Hamilton CA, Clarke GD, et al. Visualization and functional assessment of proximal and middle left anterior descending coronary stenoses in humans with magnetic resonance imaging. Circulation 1999;99(25):3248–3254.

    PubMed  CAS  Google Scholar 

  89. Nagel E, Thouet T, Klein C, et al. Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. Circulation 2003;107(13):1738–1743.

    PubMed  Google Scholar 

  90. Fieno DS, Shea SM, Li Y, Harris KR, Finn JP, Li D. Myocardial perfusion imaging based on the blood oxygen level-dependent effect using T2-prepared steady-state free-precession magnetic resonance imaging. Circulation 2004;110(10):1284–1290.

    PubMed  Google Scholar 

  91. Wacker CM, Hartlep AW, Pfleger S, Schad LR, Ertl G, Bauer WR. Susceptibility-sensitive magnetic resonance imaging detects human myocardium supplied by a stenotic coronary artery without a contrast agent. J Am Coll Cardiol 2003;41(5):834–840.

    PubMed  Google Scholar 

  92. Klocke FJ, Li D. Testing coronary flow reserve without a provocative stress. A “BOLD” approach. J Am Coll Cardiol 2003;41(5):841–842

    PubMed  Google Scholar 

  93. Hundley WG, Hamilton CA, Thomas MS, et al. Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation 1999;100(16):1697–1702.

    PubMed  CAS  Google Scholar 

  94. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105(4):539–542.

    PubMed  Google Scholar 

  95. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38(4):591–603.

    PubMed  CAS  Google Scholar 

  96. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42(5):952–962.

    PubMed  CAS  Google Scholar 

  97. Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE. Analysis of myocardial perfusion MRI. J Magn Reson Imaging 2004;19(6):758–770.

    PubMed  Google Scholar 

  98. Wilke N, Jerosch-Herold M, Wang Y, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 1997;204(2):373–384.

    PubMed  CAS  Google Scholar 

  99. Epstein FH, London JF, Peters DC, et al. Multislice first-pass cardiac perfusion MRI: validation in a model of myocardial infarction. Magn Reson Med 2002;47(3):482–491.

    PubMed  Google Scholar 

  100. Klocke FJ, Simonetti OP, Judd RM, et al. Limits of detection of regional differences in vasodilated flow in viable myocardium by first-pass magnetic resonance perfusion imaging. Circulation 2001;104(20):2412–2416.

    PubMed  CAS  Google Scholar 

  101. Christian TF, Rettmann DW, Aletras AH, et al. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 2004;232(3):677–684.

    PubMed  Google Scholar 

  102. Lee DC, Simonetti OP, Harris KR, et al. Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation 2004;110(1):58–65.

    PubMed  Google Scholar 

  103. Beller GA, Holzgrefe HH, Watson DD. Effects of dipyridamole-induced vasodilation on myocardial uptake and clearance kinetics of thallium-201. Circulation 1983;68(6):1328–1338.

    PubMed  CAS  Google Scholar 

  104. Glover DK, Okada RD. Myocardial kinetics of Tc-MIBI in canine myocardium after dipyridamole. Circulation 1990;81(2):628–637.

    PubMed  CAS  Google Scholar 

  105. Klein MA, Collier BD, Hellman RS, Bamrah VS. Detection of chronic coronary artery disease: value of pharmacologically stressed, dynamically enhanced turbo-fast low-angle shot MR images. AJR 1993;161(2):257–263.

    PubMed  CAS  Google Scholar 

  106. Hartnell G, Cerel A, Kamalesh M, et al. Detection of myocardial ischemia: value of combined myocardial perfusion and cineangiographic MR imaging. AJR 1994;163(5):1061–1067.

    PubMed  CAS  Google Scholar 

  107. Eichenberger AC, Schuiki E, Kochli VD, Amann FW, McKinnon GC, von Schulthess GK. Ischemic heart disease: assessment with gadolinium-enhanced ultrafast MR imaging and dipyridamole stress. J Magn Reson Imaging 1994;4(3):425–431.

    PubMed  CAS  Google Scholar 

  108. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000;101(12):1379–1383.

    PubMed  CAS  Google Scholar 

  109. Bertschinger KM, Nanz D, Buechi M, et al. Magnetic resonance myocardial first-pass perfusion imaging: parameter optimization for signal response and cardiac coverage. J Magn Reson Imaging 2001;14(5):556–562.

    PubMed  CAS  Google Scholar 

  110. Schwitter J, Nanz D, Kneifel S, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 2001;103(18):2230–2235.

    PubMed  CAS  Google Scholar 

  111. Panting JR, Gatehouse PD, Yang GZ, et al. Echo-planar magnetic resonance myocardial perfusion imaging: parametric map analysis and comparison with thallium SPECT. J Magn Reson Imaging 2001;13(2):192–200.

    PubMed  CAS  Google Scholar 

  112. Sensky PR, Samani NJ, Reek C, Cherryman GR. Magnetic resonance perfusion imaging in patients with coronary artery disease: a qualitative approach. Int J Cardiovasc Imaging 2002;18(5):373–383; discussion 385–386.

    PubMed  Google Scholar 

  113. Ibrahim T, Nekolla SG, Schreiber K, et al. Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography. J Am Coll Cardiol 2002;39(5):864–870.

    PubMed  Google Scholar 

  114. Chiu CW, So NM, Lam WW, Chan KY, Sanderson JE. Combined first-pass perfusion and viability study at MR imaging in patients with non-ST segment-elevation acute coronary syndromes: feasibility study. Radiology 2003;226(3):717–722.

    PubMed  Google Scholar 

  115. Ishida N, Sakuma H, Motoyasu M, et al. Noninfarcted myocardium: correlation between dynamic first-pass contrastenhanced myocardial MR imaging and quantitative coronary angiography. Radiology 2003;229(1):209–216.

    PubMed  Google Scholar 

  116. Nagel E, Klein C, Paetsch I, et al. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 2003;108(4):432–437.

    PubMed  Google Scholar 

  117. Doyle M, Fuisz A, Kortright E, et al. The impact of myocardial flow reserve on the detection of coronary artery disease by perfusion imaging methods: an NHLBI WISE study. J Cardiovasc Magn Reson 2003;5(3):475–485.

    PubMed  Google Scholar 

  118. Wolff SD, Schwitter J, Coulden R, et al. Myocardial first-pass perfusion magnetic resonance imaging: a multicenter doseranging study. Circulation 2004;110(6):732–737.

    PubMed  CAS  Google Scholar 

  119. Giang TH, Nanz D, Coulden R, et al. Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi-centre experience. Eur Heart J 2004;25(18):1657–1665.

    PubMed  CAS  Google Scholar 

  120. Paetsch I, Jahnke C, Wahl A, et al. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 2004;110(7):835–842.

    PubMed  CAS  Google Scholar 

  121. Plein S, Greenwood JP, Ridgway JP, Cranny G, Ball SG, Sivananthan MU. Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J Am Coll Cardiol 2004;44(11):2173–2181.

    PubMed  Google Scholar 

  122. Plein S, Radjenovic A, Ridgway JP, et al. Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology 2005;235(2):423–430.

    PubMed  Google Scholar 

  123. Keijer JT, van Rossum AC, van Eenige MJ, et al. Magnetic resonance imaging of regional myocardial perfusion in patients with single-vessel coronary artery disease: quantitative comparison with (201)Thallium-SPECT and coronary angiography. J Magn Reson Imaging 2000;11(6):607–615.

    PubMed  CAS  Google Scholar 

  124. Cecil MP, Kosinski AS, Jones MT, et al. The importance of work-up (verification) bias correction in assessing the accuracy of SPECT thallium-201 testing for the diagnosis of coronary artery disease. J Clin Epidemiol 1996;49(7):735–742.

    PubMed  CAS  Google Scholar 

  125. Detrano R, Janosi A, Lyons KP, Marcondes G, Abbassi N, Froelicher VF. Factors affecting sensitivity and specificity of a diagnostic test: the exercise thallium scintigram. Am J Med 1988;84(4):699–710.

    PubMed  CAS  Google Scholar 

  126. Fuster V, Kim RJ. Frontiers in cardiovascular magnetic resonance. Circulation 2005;112:135–144.

    PubMed  Google Scholar 

  127. McCrohon JA, Moon JC, Prasad SK, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003;108(1):54–59.

    PubMed  CAS  Google Scholar 

  128. Kim RJ, Judd RM. Gadolinium-enhanced magnetic resonance imaging in hypertrophic cardiomyopathy: in vivo imaging of the pathologic substrate for premature cardiac death? J Am Coll Cardiol 2003;41(9):1568–1572.

    PubMed  Google Scholar 

  129. Shah DJ, Judd RM, Kim RJ. Myocardial viability. In: Edelman RR, Hesselink JR, Zlatkin MB, Crues JV, eds. Clinical magnetic resonance imaging, 3rd ed. New York: Elsevier, 2006.

    Google Scholar 

  130. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J 2005;26:1461–1474.

    PubMed  Google Scholar 

  131. Schuster EH, Bulkley BH. Ischemic cardiomyopathy: a clinicopathologic study of fourteen patients. Am Heart J 1980;100(4):506–512.

    PubMed  CAS  Google Scholar 

  132. Boucher CA, Fallon JT, Johnson RA, Yurchak PM. Cardiomyopathic syndrome caused by coronary artery disease. III: Prospective clinicopathological study of its prevalence among patients with clinically unexplained chronic heart failure. Br Heart J 1979;41(5):613–620.

    PubMed  CAS  Google Scholar 

  133. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 1979;40(6):633–644

    PubMed  CAS  Google Scholar 

  134. Choudhury L, Mahrholdt H, Wagner A, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2002;40(12):2156–2164.

    PubMed  Google Scholar 

  135. Moon JC, Sachdev B, Elkington AG, et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 2003;24(23):2151–2155.

    PubMed  Google Scholar 

  136. Hurwitz JL, Josephson ME. Sudden cardiac death in patients with chronic coronary heart disease. Circulation 1992;85(1 suppl):I43–49.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kim, R.J., Klem, I., Judd, R.M. (2007). Magnetic Resonance Imaging of the Myocardium. In: Willerson, J.T., Wellens, H.J.J., Cohn, J.N., Holmes, D.R. (eds) Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84628-715-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-715-2_39

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-188-4

  • Online ISBN: 978-1-84628-715-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics