Skip to main content

Echocardiographic Assessment of Valvular Heart Disease

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheitlin MD, Alpert JS, Armstrong WF, et al. ACC/AHA Guidelines for the Clinical Application of Echocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. Circulation 1997;95(6):1686–1744.

    PubMed  CAS  Google Scholar 

  2. Cheitlin MD, Armstrong WF, Aurigemma GP, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Circulation 2003;108(9):1146–1162.

    Article  PubMed  Google Scholar 

  3. Bonow RO, Carabello B, de Leon AC Jr, et al. Guidelines for the management of patients with valvular heart disease: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Valvular Heart Disease). Circulation 1998;98(18):1949–1984.

    PubMed  CAS  Google Scholar 

  4. Tribouilloy CM, Avierinos JF, Remadi JP, et al. Impact of echocardiography on indications for surgery in chronic mitral and aortic regurgitation. Clin Cardiol 2004;27(8):442–448.

    Article  PubMed  Google Scholar 

  5. Kwan J, Shiota T, Agler DA, et al. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time threedimensional echocardiography study. Circulation 2003;107(8):1135–1140.

    Article  PubMed  Google Scholar 

  6. Quinones MA, Otto CM, Stoddard M, et al. Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 2002;15(2):167–184.

    Article  PubMed  Google Scholar 

  7. Zoghbi WA, Enriquez-Sarano M, Foster E, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 2003;16(7):777–802.

    Article  PubMed  Google Scholar 

  8. Gardin JM, Adams DB, Douglas PS, et al. Recommendations for a standardized report for adult transthoracic echocardiography: a report from the American Society of Echocardiography’s Nomenclature and Standards Committee and Task Force for a Standardized Echocardiography Report. J Am Soc Echocardiogr 2002;15(3):275–290.

    Article  PubMed  Google Scholar 

  9. Roberts BJ, Grayburn PA. Color flow imaging of the vena contracta in mitral regurgitation: technical considerations. J Am Soc Echocardiogr 2003;16(9):1002–1006.

    Article  PubMed  Google Scholar 

  10. Recusani F, Bargiggia GS, Yoganathan AP, et al. A new method for quantification of regurgitant flow rate using color Doppler flow imaging of the flow convergence region proximal to a discrete orifice. An in vitro study. Circulation 1991;83(2):594–604.

    PubMed  CAS  Google Scholar 

  11. Utsunomiya T, Ogawa T, Doshi R, et al. Doppler color flow “proximal isovelocity surface area” method for estimating volume flow rate: effects of orifice shape and machine factors. J Am Coll Cardiol 1991;17(5):1103–1111.

    PubMed  CAS  Google Scholar 

  12. Bargiggia GS, Tronconi L, Sahn DJ, et al. A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation 1991;84(4):1481–1489.

    PubMed  CAS  Google Scholar 

  13. Enriquez-Sarano M, Seward JB, Bailey KR, et al. Effective regurgitant orifice area: a noninvasive Doppler development of an old hemodynamic concept. J Am Coll Cardiol 1994;23(2):443–451.

    PubMed  CAS  Google Scholar 

  14. Grayburn PA, Fehske W, Omran H, et al. Multiplane transesophageal echocardiographic assessment of mitral regurgitation by Doppler color flow mapping of the vena contracta. Am J Cardiol 1994;74(9):912–917.

    Article  PubMed  CAS  Google Scholar 

  15. Heinle SK, Hall SA, Brickner ME, et al. Comparison of vena contracta width by multiplane transesophageal echocardiography with quantitative Doppler assessment of mitral regurgitation. Am J Cardiol 1998;81(2):175–179.

    Article  PubMed  CAS  Google Scholar 

  16. Willett DL, Hall SA, Jessen ME, et al. Assessment of aortic regurgitation by transesophageal color Doppler imaging of the vena contracta: validation against an intraoperative aortic flow probe. J Am Coll Cardiol 2001;37(5):1450–1455.

    Article  PubMed  CAS  Google Scholar 

  17. Helmcke F, Nanda NC, Hsiung MC, et al. Color Doppler assessment of mitral regurgitation with orthogonal planes. Circulation 1987;75(1):175–183.

    PubMed  CAS  Google Scholar 

  18. Perry GJ, Helmcke F, Nanda NC, et al. Evaluation of aortic insufficiency by Doppler color flow mapping. J Am Coll Cardiol 1987;9(4):952–959.

    PubMed  CAS  Google Scholar 

  19. Yoshida K, Yoshikawa J, Yamaura Y, et al. Assessment of mitral regurgitation by biplane transesophageal color Doppler flow mapping. Circulation 1990;82(4):1121–1126.

    PubMed  CAS  Google Scholar 

  20. Smith MD, Harrison MR, Pinton R, et al. Regurgitant jet size by transesophageal compared with transthoracic Doppler color flow imaging. Circulation 1991;83(1):79–86.

    PubMed  CAS  Google Scholar 

  21. Chao K, Moises VA, Shandas R, et al. Influence of the Coanda effect on color Doppler jet area and color encoding. In vitro studies using color Doppler flow mapping. Circulation 1992;85(1):333–341.

    PubMed  CAS  Google Scholar 

  22. Cape EG, Yoganathan AP, Weyman AE, et al. Adjacent solid boundaries alter the size of regurgitant jets on Doppler color flow maps. J Am Coll Cardiol 1991;17(5):1094–1102.

    PubMed  CAS  Google Scholar 

  23. Sahn DJ. Instrumentation and physical factors related to visualization of stenotic and regurgitant jets by Doppler color flow mapping. J Am Coll Cardiol 1988;12(5):1354–1365.

    PubMed  CAS  Google Scholar 

  24. Agmon Y, Khandheria BK, Meissner I, et al. Aortic valve sclerosis and aortic atherosclerosis: different manifestations of the same disease? Insights from a population-based study. J Am Coll Cardiol 2001;38(3):827–834.

    Article  PubMed  CAS  Google Scholar 

  25. Freeman RV, Otto CM. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 2005;111(24):3316–3326.

    Article  PubMed  Google Scholar 

  26. Otto CM, Lind BK, Kitzman DW, et al. Association of aorticvalve sclerosis with cardiovascular mortality and morbidity in the elderly. N Engl J Med 1999;341(3):142–147.

    Article  PubMed  CAS  Google Scholar 

  27. Hallgrimsson J. Chronic non-rheumatic valvular heart disease. An autopsy study. Acta Pathol Microbiol Scand [A] 1976;84(3):247–252.

    CAS  Google Scholar 

  28. Hahn RT, Roman MJ, Mogtader AH, et al. Association of aortic dilation with regurgitant, stenotic and functionally normal bicuspid aortic valves. J Am Coll Cardiol 1992;19(2):283–288.

    PubMed  CAS  Google Scholar 

  29. Tardif JC, Miller DS, Pandian NG, et al. Effects of variations in flow on aortic valve area in aortic stenosis based on in vivo planimetry of aortic valve area by multiplane transesophageal echocardiography. Am J Cardiol 1995;76(3):193–198.

    Article  PubMed  CAS  Google Scholar 

  30. Tardif JC, Rodrigues AG, Hardy JF, et al. Simultaneous determination of aortic valve area by the Gorlin formula and by transesophageal echocardiography under different transvalvular flow conditions. Evidence that anatomic aortic valve area does not change with variations in flow in aortic stenosis. J Am Coll Cardiol 1997;29(6):1296–1302.

    Article  PubMed  CAS  Google Scholar 

  31. Baumgartner H, Stefenelli T, Niederberger J, et al. “Overestimation” of catheter gradients by Doppler ultrasound in patients with aortic stenosis: a predictable manifestation of pressure recovery. J Am Coll Cardiol 1999;33(6):1655–1661

    Article  PubMed  CAS  Google Scholar 

  32. Currie PJ, Seward JB, Reeder GS, et al. Continuous-wave Doppler echocardiographic assessment of severity of calcific aortic stenosis: a simultaneous Doppler-catheter correlative study in 100 adult patients. Circulation 1985;71(6):1162–1169.

    PubMed  CAS  Google Scholar 

  33. Zoghbi WA, Farmer KL, Soto JG, et al. Accurate noninvasive quantification of stenotic aortic valve area by Doppler echocardiography. Circulation 1986;73(3):452–459.

    PubMed  CAS  Google Scholar 

  34. Otto CM, Pearlman AS, Comess KA, et al. Determination of the stenotic aortic valve area in adults using Doppler echocardiography. J Am Coll Cardiol 1986;7(3):509–517.

    PubMed  CAS  Google Scholar 

  35. Bermejo J, Garcia-Fernandez MA, Torrecilla EG, et al. Effects of dobutamine on Doppler echocardiographic indexes of aortic stenosis. J Am Coll Cardiol 1 1996;28(5):1206–1213.

    Article  CAS  Google Scholar 

  36. Burwash IG, Hay KM, Chan KL. Hemodynamic stability of valve area, valve resistance, and stroke work loss in aortic stenosis: a comparative analysis. J Am Soc Echocardiogr 2002;15(8):814–822.

    Article  PubMed  Google Scholar 

  37. deFilippi CR, Willett DL, Brickner ME, et al. Usefulness of dobutamine echocardiography in distinguishing severe from nonsevere valvular aortic stenosis in patients with depressed left ventricular function and low transvalvular gradients. Am J Cardiol 1995;75(2):191–194.

    Article  PubMed  CAS  Google Scholar 

  38. Monin JL, Monchi M, Gest V, et al. Aortic stenosis with severe left ventricular dysfunction and low transvalvular pressure gradients: risk stratification by low-dose dobutamine echocardiography. J Am Coll Cardiol 2001;37(8):2101–2107.

    Article  PubMed  CAS  Google Scholar 

  39. Schwammenthal E, Vered Z, Moshkowitz Y, et al. Dobutamine echocardiography in patients with aortic stenosis and left ventricular dysfunction: predicting outcome as a function of management strategy. Chest 2001;119(6):1766–1777.

    Article  PubMed  CAS  Google Scholar 

  40. Otto CM, Burwash IG, Legget ME, et al. Prospective study of asymptomatic valvular aortic stenosis. Clinical, echocardiographic, and exercise predictors of outcome. Circulation 1997;95(9):2262–2270.

    PubMed  CAS  Google Scholar 

  41. Bermejo J, Antoranz JC, Burwash IG, et al. In-vivo analysis of the instantaneous transvalvular pressure difference-flow relationship in aortic valve stenosis: implications of unsteady fluiddynamics for the clinical assessment of disease severity. J Heart Valve Dis 2002;11(4):557–566.

    PubMed  Google Scholar 

  42. Carabello BA. Timing of valve replacement in aortic stenosis. Moving closer to perfection. Circulation 1997;95(9):2241–2243.

    PubMed  CAS  Google Scholar 

  43. Bednarz JE, Krauss D, Lang RM. An echocardiographic approach to the assessment of aortic stenosis. J Am Soc Echocardiogr 1996;9(3):286–294.

    Article  PubMed  CAS  Google Scholar 

  44. Minakata K, Schaff HV, Zehr KJ, et al. Is repair of aortic valve regurgitation a safe alternative to valve replacement? J Thorac Cardiovasc Surg 2004;127(3):645–653.

    Article  PubMed  Google Scholar 

  45. Roman MJ, Devereux RB, Niles NW, et al. Aortic root dilatation as a cause of isolated, severe aortic regurgitation. Prevalence, clinical and echocardiographic patterns, and relation to left ventricular hypertrophy and function. Ann Intern Med 1987;106(6):800–807.

    PubMed  CAS  Google Scholar 

  46. Roman MJ, Devereux RB, Kramer-Fox R, et al. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol 1989;64(8):507–512.

    Article  PubMed  CAS  Google Scholar 

  47. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18(12):1440–1463.

    Article  PubMed  Google Scholar 

  48. Schiller NB, Shah PM, Crawford M, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 1989;2(5):358–367.

    PubMed  CAS  Google Scholar 

  49. Teague SM, Heinsimer JA, Anderson JL, et al. Quantification of aortic regurgitation utilizing continuous wave Doppler ultrasound. J Am Coll Cardiol 1986;8(3):592–599.

    PubMed  CAS  Google Scholar 

  50. Rokey R, Sterling LL, Zoghbi WA, et al. Determination of regurgitant fraction in isolated mitral or aortic regurgitation by pulsed Doppler two-dimensional echocardiography. J Am Coll Cardiol 1986;7(6):1273–1278.

    PubMed  CAS  Google Scholar 

  51. Enriquez-Sarano M, Bailey KR, Seward JB, et al. Quantitative Doppler assessment of valvular regurgitation. Circulation 1993;87(3):841–848.

    PubMed  CAS  Google Scholar 

  52. Lewis JF, Kuo LC, Nelson JG, et al. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation 1984;70(3):425–431.

    PubMed  CAS  Google Scholar 

  53. Boughner DR. Assessment of aortic insufficiency by transcutaneous Doppler ultrasound. Circulation 1975;52(5):874–879.

    PubMed  CAS  Google Scholar 

  54. Touche T, Prasquier R, Nitenberg A, et al. Assessment and follow-up of patients with aortic regurgitation by an updated Doppler echocardiographic measurement of the regurgitant fraction in the aortic arch. Circulation 1985;72(4):819–824.

    PubMed  CAS  Google Scholar 

  55. Reimold SC, Maier SE, Aggarwal K, et al. Aortic flow velocity patterns in chronic aortic regurgitation: implications for Doppler echocardiography. J Am Soc Echocardiogr 1996;9(5):675–683.

    Article  PubMed  CAS  Google Scholar 

  56. Singh JP, Evans JC, Levy D, et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am J Cardiol 1999;83(6):897–902.

    Article  PubMed  CAS  Google Scholar 

  57. Tribouilloy CM, Enriquez-Sarano M, Bailey KR, et al. Assessment of severity of aortic regurgitation using the width of the vena contracta: a clinical color Doppler imaging study. Circulation 2000;102(5):558–564.

    PubMed  CAS  Google Scholar 

  58. Tribouilloy CM, Enriquez-Sarano M, Fett SL, et al. Application of the proximal flow convergence method to calculate the effective regurgitant orifice area in aortic regurgitation. J Am Coll Cardiol 1998;32(4):1032–1039.

    Article  PubMed  CAS  Google Scholar 

  59. Meyer T, Sareli P, Pocock WA, et al. Echocardiographic and hemodynamic correlates of diastolic closure of mitral valve and diastolic opening of aortic valve in severe aortic regurgitation. Am J Cardiol 1987;59(12):1144–1148.

    Article  PubMed  CAS  Google Scholar 

  60. Downes TR, Nomeir AM, Hackshaw BT, et al. Diastolic mitral regurgitation in acute but not chronic aortic regurgitation: implications regarding the mechanism of mitral closure. Am Heart J 1989;117(5):1106–1112.

    Article  PubMed  CAS  Google Scholar 

  61. Wilkins GT, Weyman AE, Abascal VM, et al. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br Heart J 1988;60(4):299–308.

    Article  PubMed  CAS  Google Scholar 

  62. Cannan CR, Nishimura RA, Reeder GS, et al. Echocardiographic assessment of commissural calcium: a simple predictor of outcome after percutaneous mitral balloon valvotomy. J Am Coll Cardiol 1997;29(1):175–180.

    Article  PubMed  CAS  Google Scholar 

  63. Padial LR, Freitas N, Sagie A, et al. Echocardiography can predict which patients will develop severe mitral regurgitation after percutaneous mitral valvulotomy. J Am Coll Cardiol 1996;27(5):1225–1231.

    Article  PubMed  CAS  Google Scholar 

  64. Wann LS, Weyman AE, Feigenbaum H, et al. Determination of mitral valve area by cross-sectional echocardiography. Ann Intern Med 1978;88(3):337–341.

    PubMed  CAS  Google Scholar 

  65. Faletra F, Pezzano A Jr, Fusco R, et al. Measurement of mitral valve area in mitral stenosis: four echocardiographic methods compared with direct measurement of anatomic orifices. J Am Coll Cardiol 1996;28(5):1190–1197.

    Article  PubMed  CAS  Google Scholar 

  66. Binder TM, Rosenhek R, Porenta G, et al. Improved assessment of mitral valve stenosis by volumetric real-time three-dimensional echocardiography. J Am Coll Cardiol 2000;36(4):1355–1361.

    Article  PubMed  CAS  Google Scholar 

  67. Xie MX, Wang XF, Cheng TO, et al. Comparison of accuracy of mitral valve area in mitral stenosis by real-time, threedimensional echocardiography versus two-dimensional echocardiography versus Doppler pressure half-time. Am J Cardiol 2005;95(12):1496–1499.

    Article  PubMed  Google Scholar 

  68. Zamorano J, Cordeiro P, Sugeng L, et al. Real-time threedimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach. J Am Coll Cardiol 2004;43(11):2091–2096.

    Article  PubMed  Google Scholar 

  69. Rahimtoola SH, Durairaj A, Mehra A, et al. Current evaluation and management of patients with mitral stenosis. Circulation 2002;106(10):1183–1188.

    Article  PubMed  Google Scholar 

  70. Hatle L, Angelsen B, Tromsdal A. Noninvasive assessment of atrioventricular pressure half-time by Doppler ultrasound. Circulation 1979;60(5):1096–1104.

    PubMed  CAS  Google Scholar 

  71. Bryg RJ, Williams GA, Labovitz AJ, et al. Effect of atrial fibrillation and mitral regurgitation on calculated mitral valve area in mitral stenosis. Am J Cardiol 1986;57(8):634–638.

    Article  PubMed  CAS  Google Scholar 

  72. Flachskampf FA, Weyman AE, Gillam L, et al. Aortic regurgitation shortens Doppler pressure half-time in mitral stenosis: clinical evidence, in vitro simulation and theoretic analysis. J Am Coll Cardiol 1990;16(2):396–404.

    PubMed  CAS  Google Scholar 

  73. Thomas JD, Wilkins GT, Choong CY, et al. Inaccuracy of mitral pressure half-time immediately after percutaneous mitral valvotomy. Dependence on transmitral gradient and left atrial and ventricular compliance. Circulation 1988;78(4):980–993.

    PubMed  CAS  Google Scholar 

  74. Nakatani S, Masuyama T, Kodama K, et al. Value and limitations of Doppler echocardiography in the quantification of stenotic mitral valve area: comparison of the pressure half-time and the continuity equation methods. Circulation 1988;77(1):78–85.

    PubMed  CAS  Google Scholar 

  75. Rodriguez L, Thomas JD, Monterroso V, et al. Validation of the proximal flow convergence method. Calculation of orifice area in patients with mitral stenosis. Circulation 1993;88(3):1157–1165.

    PubMed  CAS  Google Scholar 

  76. Rifkin RD, Harper K, Tighe D. Comparison of proximal isovelocity surface area method with pressure half-time and planimetry in evaluation of mitral stenosis. J Am Coll Cardiol 1995;26(2):458–465.

    Article  PubMed  CAS  Google Scholar 

  77. Leavitt JI, Coats MH, Falk RH. Effects of exercise on transmitral gradient and pulmonary artery pressure in patients with mitral stenosis or a prosthetic mitral valve: a Doppler echocardiographic study. J Am Coll Cardiol 1991;17(7):1520–1526.

    Article  PubMed  CAS  Google Scholar 

  78. Sagar KB, Wann LS, Paulson WJ, et al. Role of exercise Doppler echocardiography in isolated mitral stenosis. Chest 1987;92(1):27–30.

    Article  PubMed  CAS  Google Scholar 

  79. Reis G, Motta MS, Barbosa MM, et al. Dobutamine stress echocardiography for noninvasive assessment and risk stratification of patients with rheumatic mitral stenosis. J Am Coll Cardiol 2004;43(3):393–401.

    Article  PubMed  Google Scholar 

  80. Schiller NB, Foster E, Redberg RF. Transesophageal echocardiography in the evaluation of mitral regurgitation. The twentyfour signs of severe mitral regurgitation. Cardiol Clin 1993;11(3):399–408.

    PubMed  CAS  Google Scholar 

  81. Hurst JW. Memories of patients with a giant left atrium. Circulation 2001;104(22):2630–2631.

    Article  PubMed  CAS  Google Scholar 

  82. Yiu SF, Enriquez-Sarano M, Tribouilloy C, et al. Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: a quantitative clinical study. Circulation 2000;102(12):1400–1406.

    PubMed  CAS  Google Scholar 

  83. Breithardt OA, Sinha AM, Schwammenthal E, et al. Acute effects of cardiac resynchronization therapy on functional mitral regurgitation in advanced systolic heart failure. J Am Coll Cardiol 2003;41(5):765–770.

    Article  PubMed  Google Scholar 

  84. Levine RA, Schwammenthal E. Ischemic mitral regurgitation on the threshold of a solution: from paradoxes to unifying concepts. Circulation 2005;112(5):745–758.

    Article  PubMed  Google Scholar 

  85. Watanabe N, Ogasawara Y, Yamaura Y, et al. Quantitation of mitral valve tenting in ischemic mitral regurgitation by transthoracic real-time three-dimensional echocardiography. J Am Coll Cardiol 2005;45(5):763–769.

    Article  PubMed  Google Scholar 

  86. Ozdemir K, Altunkeser BB, Sokmen G, et al. Usefulness of peak mitral inflow velocity to predict severe mitral regurgitation in patients with normal or impaired left ventricular systolic function. Am Heart J 2001;142(6):1065–1071.

    Article  PubMed  CAS  Google Scholar 

  87. Enriquez-Sarano M, Dujardin KS, Tribouilloy CM, et al. Determinants of pulmonary venous flow reversal in mitral regurgitation and its usefulness in determining the severity of regurgitation. Am J Cardiol 1999;83(4):535–541.

    Article  PubMed  CAS  Google Scholar 

  88. Katayama M, Yamamuro A, Kanzaki Y, et al. [Incidence of systolic pulmonary venous flow reversal in patients with mitral valve prolapse: influence of the prolapse site]. J Cardiol 2001;38(6):319–325.

    PubMed  CAS  Google Scholar 

  89. Chen CG, Thomas JD, Anconina J, et al. Impact of impinging wall jet on color Doppler quantification of mitral regurgitation. Circulation 1991;84(2):712–720.

    PubMed  CAS  Google Scholar 

  90. Hall SA, Brickner ME, Willett DL, et al. Assessment of mitral regurgitation severity by Doppler color flow mapping of the vena contracta. Circulation 1997;95(3):636–642.

    PubMed  CAS  Google Scholar 

  91. Vitarelli A, Conde Y, Cimino E, et al. Assessment of severity of mechanical prosthetic mitral regurgitation by transoesophageal echocardiography. Heart 2004;90(5):539–544.

    Article  PubMed  CAS  Google Scholar 

  92. Schwammenthal E, Chen C, Benning F, et al. Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation 1994;90(1):307–322.

    PubMed  CAS  Google Scholar 

  93. Enriquez-Sarano M, Miller FA Jr, Hayes SN, et al. Effective mitral regurgitant orifice area: clinical use and pitfalls of the proximal isovelocity surface area method. J Am Coll Cardiol 1995;25(3):703–709.

    Article  PubMed  CAS  Google Scholar 

  94. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 2005;352(9):875–883.

    Article  PubMed  CAS  Google Scholar 

  95. Enriquez-Sarano M, Sinak LJ, Tajik AJ, et al. Changes in effective regurgitant orifice throughout systole in patients with mitral valve prolapse. A clinical study using the proximal isovelocity surface area method. Circulation 1995;92(10):2951–2958.

    PubMed  CAS  Google Scholar 

  96. Tucker PA, 2nd, Jin BS, Gaos CM, et al. Flail tricuspid leaflet after multiple biopsies following orthotopic heart transplantation: echocardiographic and hemodynamic correlation. J Heart Lung Transplant 1994;13(3):466–472.

    PubMed  Google Scholar 

  97. Nguyen V, Cantarovich M, Cecere R, et al. Tricuspid regurgitation after cardiac transplantation: how many biopsies are too many? J Heart Lung Transplant 2005;24(7 suppl):S227–231.

    Article  PubMed  Google Scholar 

  98. Tribouilloy CM, Enriquez-Sarano M, Capps MA, et al. Contrasting effect of similar effective regurgitant orifice area in mitral and tricuspid regurgitation: a quantitative Doppler echocardiographic study. J Am Soc Echocardiogr 2002;15(9):958–965.

    Article  PubMed  Google Scholar 

  99. Tribouilloy CM, Enriquez-Sarano M, Bailey KR, et al. Quantification of tricuspid regurgitation by measuring the width of the vena contracta with Doppler color flow imaging: a clinical study. J Am Coll Cardiol 2000;36(2):472–478.

    Article  PubMed  CAS  Google Scholar 

  100. Rosenhek R, Binder T, Maurer G, et al. Normal values for Doppler echocardiographic assessment of heart valve prostheses. J Am Soc Echocardiogr 2003;16(11):1116–1127.

    Article  PubMed  Google Scholar 

  101. Lin SS, Tiong IY, Asher CR, et al. Prediction of thrombus-related mechanical prosthetic valve dysfunction using transesophageal echocardiography. Am J Cardiol 2000;86(10):1097–1101.

    Article  PubMed  CAS  Google Scholar 

  102. Tong AT, Roudaut R, Ozkan M, et al. Transesophageal echocardiography improves risk assessment of thrombolysis of prosthetic valve thrombosis: results of the international PRO-TEE registry. J Am Coll Cardiol 2004;43(1):77–84.

    Article  PubMed  Google Scholar 

  103. Fernandes V, Olmos L, Nagueh SF, et al. Peak early diastolic velocity rather than pressure half-time is the best index of mechanical prosthetic mitral valve function. Am J Cardiol 2002;89(6):704–710.

    Article  PubMed  Google Scholar 

  104. Olmos L, Salazar G, Barbetseas J, et al. Usefulness of transthoracic echocardiography in detecting significant prosthetic mitral valve regurgitation. Am J Cardiol 1999;83(2):199–205.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Stainback, R.F. (2007). Echocardiographic Assessment of Valvular Heart Disease. In: Willerson, J.T., Wellens, H.J.J., Cohn, J.N., Holmes, D.R. (eds) Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84628-715-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-715-2_21

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-188-4

  • Online ISBN: 978-1-84628-715-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics