Skip to main content

Invasive and Device Management of Refractory Angina

  • Chapter
  • First Online:
Book cover Coronary Artery Disease

Abstract

Within the last 20 years, aggressive coronary revascularization and medical therapies have enabled the emergence of a large population of symptomatic patients who have exhausted all therapeutic options. Paradoxically, only one new anti-angina medication has been approved by the USA Food and Drug administration during the same period. New therapeutic options are needed. Classically, anti-angina medications reduce myocardial oxygen demand by reducing heart rate, left ventricular contractility or left ventricular wall tension. Similarly, coronary revascularization increases myocardial oxygen supply by improving coronary blood flow. Invasive interventions in general and devices in particular propose novel solutions to modulate myocardial ischemia and pain transmission in patients with refractory angina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jolicoeur EM, Ohman EM, Temple R, et al. Clinical and research issues regarding chronic advanced coronary artery disease part II: trial design, outcomes, and regulatory issues. Am Heart J. 2008;155(3):435–44.

    PubMed  Google Scholar 

  2. Rathore S, Katoh O, Matsuo H, et al. Retrograde percutaneous recanalization of chronic total occlusion of the coronary arteries: procedural outcomes and predictors of success in contemporary practice. Circ Cardiovasc Interv. 2009;2(2):124–32.

    PubMed  Google Scholar 

  3. Jax TW, Peters AJ, Khattab AA, Heintzen MP, Schoebel FC. Percutaneous coronary revascularization in patients with formerly “refractory angina pectoris in end-stage coronary artery disease” - not “end-stage” after all. BMC Cardiovasc Disord. 2009;9:42.

    PubMed  Google Scholar 

  4. Horvath KA, Aranki SF, Cohn LH, et al. Sustained Angina Relief 5 Years After Transmyocardial Laser Revascularization With a CO2 Laser. Circulation. 2001;104(12 Suppl 1):I81–4.

    Google Scholar 

  5. Henry TD, Satran D, Johnson R. Natural history of patients with refractory angina. J Am Coll Cardiol. 2006;47:231.

    Google Scholar 

  6. Stone GW. Percutaneous recanalization of chronically occluded coronary arteries: a consensus document: part I. 2005.

    Google Scholar 

  7. Srinivas VS, Brooks MM, Detre KM, et al. Contemporary percutaneous coronary intervention versus balloon angioplasty for multivessel coronary artery disease: a comparison of the National Heart, Lung and Blood Institute Dynamic Registry and the Bypass Angioplasty Revascularization Investigation (BARI) study. Circulation. 2002;106(13):1627–33.

    PubMed  CAS  Google Scholar 

  8. Abbott JD, Kip KE, Vlachos HA, et al. Recent trends in the percutaneous treatment of chronic total coronary occlusions. Am J Cardiol. 2006;97(12):1691–6.

    PubMed  Google Scholar 

  9. Dzavik V, Carere RG, Mancini GB, et al. Predictors of improvement in left ventricular function after percutaneous revascularization of occluded coronary arteries: a report from the Total Occlusion Study of Canada (TOSCA). Am Heart J. 2001;142(2):301–8.

    PubMed  CAS  Google Scholar 

  10. Sirnes PA, Myreng Y, Molstad P, Bonarjee V, Golf S. Improvement in left ventricular ejection fraction and wall motion after successful recanalization of chronic coronary occlusions. Eur Heart J. 1998;19(2):273–81.

    PubMed  CAS  Google Scholar 

  11. Safley DM, House JA, Marso SP, Grantham JA, Rutherford BD. Improvement in survival following successful percutaneous coronary intervention of coronary chronic total occlusions: variability by target vessel. JACC Cardiovasc Interv. 2008;1(3):295–302.

    PubMed  Google Scholar 

  12. Joyal D, Afilalo J, Rinfret S. Effectiveness of recanalization of chronic total occlusions: a systematic review and meta-analysis. Am Heart J. 2010;160(1):179–87.

    PubMed  Google Scholar 

  13. Aziz S, Stables RH, Grayson AD, Perry RA, Ramsdale DR. Percutaneous coronary intervention for chronic total occlusions: improved survival for patients with successful revascularization compared to a failed procedure. Catheter Cardiovasc Interv. 2007;70(1):15–20.

    PubMed  Google Scholar 

  14. de Labriolle A, Bonello L, Roy P, et al. Comparison of safety, efficacy, and outcome of successful versus unsuccessful percutaneous coronary intervention in “True” chronic total occlusions. Am J Cardiol. 2008;102(9):1175–81.

    PubMed  Google Scholar 

  15. Drozd J, Wojcik J, Opalinska E, Zapolski T, Widomska-Czekajska T. Percutaneous angioplasty of chronically occluded coronary arteries: long-term clinical follow-up. Kardiol Pol. 2006;64(7):667–73.

    PubMed  Google Scholar 

  16. Hoye A, van Domburg RT, Sonnenschein K, Serruys PW. Percutaneous coronary intervention for chronic total occlusions: the Thoraxcenter experience 1992–2002. Eur Heart J. 2005;26(24):2630–6.

    PubMed  Google Scholar 

  17. Noguchi T, Miyazaki MS, Morii I, Daikoku S, Goto Y, Nonogi H. Percutaneous transluminal coronary angioplasty of chronic total occlusions. Determinants of primary success and long-term clinical outcome. Catheter Cardiovasc Interv. 2000;49(3):258–64.

    PubMed  CAS  Google Scholar 

  18. Olivari Z, Rubartelli P, Piscione F, et al. Immediate results and one-year clinical outcome after percutaneous coronary interventions in chronic total occlusions: data from a multicenter, prospective, observational study (TOAST-GISE). J Am Coll Cardiol. 2003;41(10):1672–8.

    PubMed  Google Scholar 

  19. Prasad A, Rihal CS, Lennon RJ, Wiste HJ, Singh M, Holmes Jr DR. Trends in outcomes after percutaneous coronary intervention for chronic total occlusions: a 25-year experience from the Mayo Clinic. J Am Coll Cardiol. 2007;49(15):1611–8.

    PubMed  Google Scholar 

  20. Suero JA, Marso SP, Jones PG, et al. Procedural outcomes and long-term survival among patients undergoing percutaneous coronary intervention of a chronic total occlusion in native coronary arteries: a 20-year experience. J Am Coll Cardiol. 2001;38(2):409–14.

    PubMed  CAS  Google Scholar 

  21. Valenti R, Migliorini A. Signorini U et al. Eur Heart J: Impact of complete revascularization with percutaneous coronary intervention on survival in patients with at least one chronic total occlusion; 2008.

    Google Scholar 

  22. Barsoum M, Ford M, Rihal C, et al. Angiographic and Clinical Outcome of Chronic Total Occlusion with Intractable Angian on Enhanced External Counterpulsation: An Institutional Case Series Review. Catheterization and Cardiovascular Intervention. 2010;75(S2):S77.

    Google Scholar 

  23. Thompson CA, Jayne JE, Robb JF, et al. Retrograde Techniques and the Impact of Operator Volume on Percutaneous Intervention for Coronary Chronic Total Occlusions: An Early U.S. Experience. Journal of the American College of Cardiology: Cardiovascular Interventions. 2009;2(9):834–42.

    Google Scholar 

  24. Patel MR, Dehmer GJ, Hirshfeld JW, Smith PK, Spertus JA. ACCF/SCAI/STS/AATS/AHA/ASNC 2009 Appropriateness Criteria for Coronary Revascularization: a report by the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology Endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol. 2009;53(6):530–53.

    PubMed  Google Scholar 

  25. Apfel RE. Acoustic cavitation: a possible consequence of biomedical uses of ultrasound. Br J Cancer Suppl. 1982;5:140–6.

    PubMed  CAS  Google Scholar 

  26. Maisonhaute E, Prado C, White PC, Compton RG. Surface acoustic cavitation understood via nanosecond electrochemistry. Part III: Shear stress in ultrasonic cleaning. Ultrason Sonochem. 2002;9(6):297–303.

    PubMed  CAS  Google Scholar 

  27. Mariotto S, Cavalieri E, Amelio E, et al. Extracorporeal shock waves: from lithotripsy to anti-inflammatory action by NO production. Nitric Oxide. 2005;12(2):89–96.

    PubMed  CAS  Google Scholar 

  28. Aicher A, Heeschen C, Sasaki K, Urbich C, Zeiher AM, Dimmeler S. Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation. 2006;114(25):2823–30.

    PubMed  Google Scholar 

  29. Oi K, Fukumoto Y, Ito K, et al. Extracorporeal shock wave therapy ameliorates hindlimb ischemia in rabbits. Tohoku J Exp Med. 2008;214(2):151–8.

    PubMed  Google Scholar 

  30. Nishida T, Shimokawa H, Oi K, et al. Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation. 2004;110(19):3055–61.

    PubMed  Google Scholar 

  31. Kikuchi Y, Ito K, Ito Y, et al. Double-blind and placebo-controlled study of the effectiveness and safety of extracorporeal cardiac shock wave therapy for severe angina pectoris. Circ J. 2010;74(3):589–91.

    PubMed  Google Scholar 

  32. Fukumoto Y, Ito A, Uwatoku T, et al. Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease. Coron Artery Dis. 2006;17(1):63–70.

    PubMed  Google Scholar 

  33. Khattab AA, Brodersen B, Schuermann-Kuchenbrandt D, et al. Extracorporeal cardiac shock wave therapy: first experience in the everyday practice for treatment of chronic refractory angina pectoris. Int J Cardiol. 2007;121(1): 84–5.

    PubMed  Google Scholar 

  34. Prinz C, Lindner O, Bitter T, et al. Extracorporeal cardiac shock wave therapy ameliorates clinical symptoms and improves regional myocardial blood flow in a patient with severe coronary artery disease and refractory angina. Case Report Med. 2009;2009:639594.

    PubMed  Google Scholar 

  35. Vasyuk YA, Hadzegova AB, Shkolnik EL, et al. Initial clinical experience with extracorporeal shock wave therapy in treatment of ischemic heart failure. Congest Heart Fail. 2010;16(5):226–30.

    PubMed  Google Scholar 

  36. Wang Y, Guo T, Cai HY, et al. Cardiac shock wave therapy reduces angina and improves myocardial function in patients with refractory coronary artery disease. Clin Cardiol. 2010;33(11):693–9.

    PubMed  Google Scholar 

  37. Gutersohn A, Caspari GH, Marlinghaus E. Haude M. Presented at World Congress of Cardiology: Comparison of Cardiac Shock Wave Therapy and Percutaneous Myocardial Laser Revascularization Therapy in Endstage CAD Patients with Refractory Angina; 2006.

    Google Scholar 

  38. Faber L, Linder O, Prinz C, et al. Echo-Guided Extracorporeal Shock Wave Therapy for Refractory Angina Improves Myocardial Blood Flow as Assessed by PET Imaging. J Am Coll Cardiol. 2011;55(A120):E1125.

    Google Scholar 

  39. Belcaro G, Nicolaides AN, Marlinghaus EH, et al. Shock waves in vascular diseases: an in-vitro study. Angiology. 1998;49(10):777–88.

    PubMed  CAS  Google Scholar 

  40. http://clinicaltrials.gov/ct2/results?term=extracorporeal+shock+wave+therapy+heart. 14-1-2011. Ref Type: Online Source

  41. Jonnesco T. Angine de poitrine guérie par la résection du sympatique dans la maladie de Basedow, l’épilepsie, l’idiotie, et du glaucome. Bull Acad Med Paris. 2011;84:93–102.

    Google Scholar 

  42. Wiener L, Cox JW. Influence of stellate ganglion block on angina pectoris and the post-exercise electrocardiogram. Am J Med Sci. 1966;252(3):289–95.

    PubMed  CAS  Google Scholar 

  43. Moore R, Groves D, Hammond C, Leach A, Chester MR. Temporary sympathectomy in the treatment of chronic refractory angina. J Pain Symptom Manage. 2005;30(2):183–91.

    PubMed  Google Scholar 

  44. Cobb LA, Thomas GI, Dillard DH, Merendino KA, Bruce RA. An evaluation of internal-mammary-artery ligation by a double-blind technic. N Engl J Med. 1959;260(22):1115–8.

    PubMed  CAS  Google Scholar 

  45. Schott GD. Interrupting the sympathetic outflow in causalgia and reflex sympathetic dystrophy. BMJ. 1998;316(7134):792–3.

    PubMed  CAS  Google Scholar 

  46. Jadad AR, Carroll D, Glynn CJ, McQuay HJ. Intravenous regional sympathetic blockade for pain relief in reflex sympathetic dystrophy: a systematic review and a randomized, double-blind crossover study. J Pain Symptom Manage. 1995;10(1):13–20.

    PubMed  CAS  Google Scholar 

  47. Chester M, Hammond C, Leach A. Long-term benefits of stellate ganglion block in severe chronic refractory angina. Pain. 2000;87(1):103–5.

    PubMed  CAS  Google Scholar 

  48. Gramling-Babb P, Miller MJ, Reeves ST, Roy RC, Zile MR. Treatment of medically and surgically refractory angina pectoris with high thoracic epidural analgesia: initial clinical experience. Am Heart J. 1997;133(6):648–55.

    PubMed  CAS  Google Scholar 

  49. Forouzanfar T, van KM, Weber WE. Radiofrequency lesions of the stellate ganglion in chronic pain syndromes: retrospective analysis of clinical efficacy in 86 patients. Clin J Pain. 2000;16(2):164–8.

    PubMed  CAS  Google Scholar 

  50. Wulf H, Maier C. Complications and side effects of stellate ganglion blockade. Results of a questionnaire survey. Anaesthesist. 1992;41(3):146–51.

    PubMed  CAS  Google Scholar 

  51. Chan CW, Chalkiadis GA. A case of sympathetically mediated headache treated with stellate ganglion blockade. Pain Med. 2010;11(8):1294–8.

    PubMed  Google Scholar 

  52. Chaturvedi A, Dash H. Locked-in syndrome during stellate ganglion block. Indian J Anaesth. 2010;54(4):324–6.

    PubMed  CAS  Google Scholar 

  53. Huntoon MA. The vertebral artery is unlikely to be the sole source of vascular complications occurring during stellate ganglion block. Pain Pract. 2010;10(1):25–30.

    PubMed  Google Scholar 

  54. Narouze S, Vydyanathan A, Patel N. Ultrasound-guided stellate ganglion block successfully prevented esophageal puncture. Pain Physician. 2007;10(6):747–52.

    PubMed  Google Scholar 

  55. Varela C, Palacio F, Reina MA, Lopez A, Benito-Leon J. Horner’s syndrome secondary to epidural anesthesia. Neurologia. 2007;22(3):196–200.

    PubMed  CAS  Google Scholar 

  56. Higa K, Hirata K, Hirota K, Nitahara K, Shono S. Retropharyngeal hematoma after stellate ganglion block: analysis of 27 patients reported in the literature. Anesthesiology. 2006;105(6):1238–45.

    PubMed  Google Scholar 

  57. Masuda A, Fujiki A. Sinus arrest after right stellate ganglion block. Anesth Analg. 1994;79(3):607.

    PubMed  CAS  Google Scholar 

  58. Prager JP. What does the mechanism of spinal cord stimulation tell us about complex regional pain syndrome? Pain Medicine. 2010;11(8):1278–83.

    PubMed  Google Scholar 

  59. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(699):971–9.

    PubMed  CAS  Google Scholar 

  60. Crick SJ, Sheppard MN, Anderson RH. Nerve Supply of the Heart. In: ter Host GJ, editor. The nervous system and the heart. Humana Press ed. 2000.

    Google Scholar 

  61. Zan E, Kurt KN, Yousem DM, Christo PJ. Spinal cord stimulators: typical positioning and postsurgical complications. Am J Roentgenol. 2011;196(2):437–45.

    Google Scholar 

  62. de Jongste MJ, Hautvast RW, Hillege HL, Lie KI. Efficacy of spinal cord stimulation as adjuvant therapy for intractable angina pectoris: a prospective, randomized clinical study. Working group on neurocardiology. J Am Coll Cardiol. 1994;23(7):1592–7.

    PubMed  Google Scholar 

  63. Eddicks S, Maier-Hauff K, Schenk M, Muller A, Baumann G, Theres H. Thoracic spinal cord stimulation improves functional status and relieves symptoms in patients with refractory angina pectoris: the first placebo-controlled randomised study. Heart. 2007;93(5):585–90.

    PubMed  Google Scholar 

  64. Hautvast RW, Dejongste MJ, Staal MJ, van Gilst WH, Lie KI. Spinal cord stimulation in chronic intractable angina pectoris: a randomized, controlled efficacy study. Am Heart J. 1998;136(6):1114–20.

    PubMed  CAS  Google Scholar 

  65. Lanza GA, Grimaldi R, Greco S, et al. Spinal cord stimulation for the treatment of refractory angina pectoris: a multicenter randomized single-blind study (the SCS-ITA trial). Pain. 2011;152(1):45–52.

    PubMed  Google Scholar 

  66. McNab D, Khan SN, Sharples LD, et al. An open label, single-centre, randomized trial of spinal cord stimulation vs. percutaneous myocardial laser revascularization in patients with refractory angina pectoris: the SPiRiT trial. Eur Heart J. 2006;27(9):1048–53.

    PubMed  Google Scholar 

  67. Mannheimer C, Eliasson T, Augustinsson LE, Blomstrand C, Emanuelsson H, Larsson S, et al. Electrical stimulation versus coronary artery bypass surgery in severe angina pectoris: the ESBY study. Circulation. 1998;97(12):1157–63.

    PubMed  CAS  Google Scholar 

  68. Emery RW, Eales F, Van Meter CHJ, Knudson MB, Solien EE, Tweden KS. Ventriculocoronary artery bypass results using a mesh-tipped device in a porcine model. Ann Thorac Surg. 2001;72(3):S1004–8.

    PubMed  CAS  Google Scholar 

  69. Ekre O, Eliasson T, Norrsell H, Wahrborg P, Mannheimer C. Long-term effects of spinal cord stimulation and coronary artery bypass grafting on quality of life and survival in the ESBY study. Eur Heart J. 2002;23(24):1938–45.

    PubMed  CAS  Google Scholar 

  70. Jessurun GA, DeJongste MJ, Hautvast RW, et al. Clinical follow-up after cessation of chronic electrical neuromodulation in patients with severe coronary artery disease: a prospective randomized controlled study on putative involvement of sympathetic activity. Pacing Clin Electrophysiol. 1999;22(10):1432–9.

    PubMed  CAS  Google Scholar 

  71. Banai S, Ben MS, Parikh KH, et al. Coronary sinus reducer stent for the treatment of chronic refractory angina pectoris: a prospective, open-label, multicenter, safety feasibility first-in-man study. J Am Coll Cardiol. 2007;49(17):1783–9.

    PubMed  Google Scholar 

  72. Oesterle SN, Reifart N, Hayase M, et al. Catheter-based coronary bypass: a development update. Catheter Cardiovasc Interv. 2003;58(2):212–8.

    PubMed  Google Scholar 

  73. Gallo R, Fefer P, Freeman M, et al. A first-in-man study of percutaneous myocardial cryotreatment in nonrevascularizable patients with refractory angina. Catheter Cardiovasc Interv. 2009;74(3):387–94.

    PubMed  Google Scholar 

  74. Taylor RS, De VJ, Buchser E, Dejongste MJ. Spinal cord stimulation in the treatment of refractory angina: systematic review and meta-analysis of randomised controlled trials. BMC Cardiovasc Disord. 2009;9:13.

    PubMed  Google Scholar 

  75. Borjesson M, Andrell P, Lundberg D, Mannheimer C. Spinal cord stimulation in severe angina pectoris–a systematic review based on the Swedish Council on Technology assessment in health care report on long-standing pain. Pain. 2008;140(3):501–8.

    PubMed  Google Scholar 

  76. Sestito A, Lanza GA, Le PD, et al. Spinal cord stimulation normalizes abnormal cortical pain processing in patients with cardiac syndrome X. Pain. 2008;139(1):82–9.

    PubMed  Google Scholar 

  77. Lanza GA, Sestito A, Sgueglia GA, et al. Effect of spinal cord stimulation on spontaneous and stress-induced angina and ‘ischemia-like’ ST-segment depression in patients with cardiac syndrome X. Eur Heart J. 2005;26(10):983–9.

    PubMed  Google Scholar 

  78. Andrell P, Yu W, Gersbach P, et al. Long-term effects of spinal cord stimulation on angina symptoms and quality of life in patients with refractory angina pectoris–results from the European Angina Registry Link Study (EARL). Heart. 2010;96(14):1132–6.

    PubMed  CAS  Google Scholar 

  79. Di PF, Lanza GA, Zuin G, et al. Immediate and long-term clinical outcome after spinal cord stimulation for refractory stable angina pectoris. Am J Cardiol. 2003;91(8):951–5.

    Google Scholar 

  80. Hrobjartsson A, Gotzsche PC. Is the placebo powerless? An analysis of clinical trials comparing placebo with no treatment. N Engl J Med. 2001;344(21):1594–602.

    PubMed  CAS  Google Scholar 

  81. Leon MB, Kornowski R, Downey WE, et al. A blinded, randomized, placebo-controlled trial of percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease. J Am Coll Cardiol. 2005;46(10):1812–9.

    PubMed  Google Scholar 

  82. Di PF, Zuin G, Giada F, et al. Long-term effects of spinal cord stimulation on myocardial ischemia and heart rate variability: results of a 48-hour ambulatory electrocardiographic monitoring. Ital Heart J. 2001;2(9):690–5.

    Google Scholar 

  83. de Jongste MJ, Haaksma J, Hautvast RW, et al. Effects of spinal cord stimulation on myocardial ischaemia during daily life in patients with severe coronary artery disease. A prospective ambulatory electrocardiographic study. Br Heart J. 1994;71(5):413–8.

    PubMed  Google Scholar 

  84. Hautvast RW, Blanksma PK, Dejongste MJ, et al. Effect of spinal cord stimulation on myocardial blood flow assessed by positron emission tomography in patients with refractory angina pectoris. Am J Cardiol. 1996;77(7):462–7.

    PubMed  CAS  Google Scholar 

  85. Chauhan A, Mullins PA, Thuraisingham SI, Taylor G, Petch MC, Schofield PM. Effect of transcutaneous electrical nerve stimulation on coronary blood flow. Circulation. 1994;89(2):694–702.

    PubMed  CAS  Google Scholar 

  86. Remme WJ, Kruyssen DA, Look MP, Bootsma M, de Leeuw PW. Systemic and cardiac neuroendocrine activation and severity of myocardial ischemia in humans. J Am Coll Cardiol. 1994;23(1):82–91.

    PubMed  CAS  Google Scholar 

  87. De LC, Mannheimer C, Habets A, et al. Effect of spinal cord stimulation on regional myocardial perfusion assessed by positron emission tomography. Am J Cardiol. 1992;69(14):1143–9.

    Google Scholar 

  88. Fricke E, Eckert S, Dongas A, et al. Myocardial perfusion after one year of spinal cord stimulation in patients with refractory angina. Nuklearmedizin. 2009;48(3):104–9.

    PubMed  Google Scholar 

  89. Kingma Jr JG, Linderoth B, Ardell JL, Armour JA, Dejongste MJ, Foreman RD. Neuromodulation therapy does not influence blood flow distribution or left-ventricular dynamics during acute myocardial ischemia. Auton Neurosci. 2001;91(1–2):47–54.

    PubMed  Google Scholar 

  90. Andrell P, Ekre O, Eliasson T, et al. Cost-effectiveness of spinal cord stimulation versus coronary artery bypass grafting in patients with severe angina pectoris–long-term results from the ESBY study. Cardiology. 2003;99(1):20–4.

    PubMed  CAS  Google Scholar 

  91. Dyer MT, Goldsmith KA, Khan SN, et al. Clinical and cost-effectiveness analysis of an open label, single-centre, randomised trial of spinal cord stimulation (SCS) versus percutaneous myocardial laser revascularisation (PMR) in patients with refractory angina pectoris: the SPiRiT trial. Trials. 2008;9:40.

    PubMed  CAS  Google Scholar 

  92. Andersen C, Hole P, Oxhoj H. Does pain relief with spinal cord stimulation for angina conceal myocardial infarction? Br Heart J. 1994;71(5):419–21.

    PubMed  CAS  Google Scholar 

  93. Kim MC, Kini A, Sharma SK. Refractory angina pectoris: mechanism and therapeutic options. J Am Coll Cardiol. 2002;39(6):923–34.

    PubMed  Google Scholar 

  94. Anselmino M, Ravera L, De LA, et al. Spinal cord ­stimulation and 30-minute heart rate variability in refractory angina patients. Pacing Clin Electrophysiol. 2009;32(1):37–42.

    PubMed  Google Scholar 

  95. Beck CS, Stanton E. Revascularization of heart by graft of systemic artery into coronary sinus. J Am Med Assoc. 1948;137(5):436–42.

    PubMed  CAS  Google Scholar 

  96. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.

    PubMed  CAS  Google Scholar 

  97. Ido A, Hasebe N, Matsuhashi H, Kikuchi K. Coronary sinus occlusion enhances coronary collateral flow and reduces subendocardial ischemia. Am J Physiol Heart Circ Physiol. 2001;280(3):H1361–7.

    PubMed  CAS  Google Scholar 

  98. http://clinicaltrials.gov/ct2/show/NCT01205893?term=COSIRA&rank=1. 13-2-2011. Ref Type: Online Source

  99. Hochberg MS, Roberts WC, Morrow AG, Austen WG. Selective arterialization of the coronary venous system. Encouraging long-term flow evaluation utilizing radioactive microspheres. J Thorac Cardiovasc Surg. 1979;77(1):1–12.

    PubMed  CAS  Google Scholar 

  100. Oesterle SN, Reifart N, Hauptmann E, Hayase M, Yeung AC. Percutaneous in situ coronary venous arterialization: report of the first human catheter-based coronary artery bypass. Circulation. 2001;103(21):2539–43.

    PubMed  CAS  Google Scholar 

  101. Goldman A, Greenstone SM, Preuss FS, Strauss SH, Chang ES. Experimental methods for producing a collateral circulation to the heart directly from the left ventricular. J Thorac Surg. 1956;31(3):364–74.

    PubMed  CAS  Google Scholar 

  102. Vicol C, Reichart B, Eifert S, et al. First clinical experience with the VSTENT: a device for direct left ventricle-to-coronary artery bypass. Ann Thorac Surg. 2005;79(2):573–9.

    PubMed  Google Scholar 

  103. Boekstegers P, Raake P, Hinkel R, et al. Hemodynamic and vascular effects of ventricular sourcing by stent-based ventricle to coronary artery bypass in patients with multivessel disease undergoing coronary artery bypass surgery. Circulation. 2005;112(9 Suppl):I304–10.

    PubMed  Google Scholar 

  104. Raake P, Hinkel R, Kupatt C, et al. Percutaneous approach to a stent-based ventricle to coronary vein bypass (venous VPASS): comparison to catheter-based selective pressure-regulated retro-infusion of the coronary vein. Eur Heart J. 2005;26(12):1228–34.

    PubMed  Google Scholar 

  105. Arora RR, Chou TM, Jain D, et al. The multicenter study of enhanced external counterpulsation (MUST-EECP): effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J Am Coll Cardiol. 1999;33(7):1833–40.

    PubMed  CAS  Google Scholar 

  106. Barsness G, Feldman AM, Holmes Jr DR, Holubkov R, Kelsey SF, Kennard ED. The International EECP Patient Registry (IEPR): design, methods, baseline characteristics, and acute results. Clin Cardiol. 2001;24(6):435–42.

    PubMed  CAS  Google Scholar 

  107. Murray S, Collins PD, James MA. An investigation into the ‘carry over’ effect of neurostimulation in the treatment of angina pectoris. Int J Clin Pract. 2004;58(7):669–74.

    PubMed  CAS  Google Scholar 

  108. Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials, Center for Biologics Evaluation and Research, and Center for Devices and Radiological Health. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071072.htm. 2011. Ref Type: Online Source.

  109. Berry DA. Bayesian clinical trials. Nat Rev Drug Discov. 2006;5(1):27–36.

    PubMed  CAS  Google Scholar 

  110. Holmes DR, Reddy VY, Turi ZG, et al. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet. 2009;374(9689):534–42.

    PubMed  CAS  Google Scholar 

  111. Holmes Jr DR, Teirstein P, Satler L, et al. Sirolimus-eluting stents vs vascular brachytherapy for instent restenosis within bare-metal stents: the SISR randomized trial. JAMA. 2006;295(11):1264–73.

    PubMed  CAS  Google Scholar 

  112. Wilber DJ, Pappone C, Neuzil P, et al. Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA. 2010;303(4):333–40.

    PubMed  CAS  Google Scholar 

  113. Berry DA, Eick SG. Adaptive assignment versus balanced randomization in clinical trials: a decision analysis. Stat Med. 1995;14(3):231–46.

    PubMed  CAS  Google Scholar 

  114. Inoue LY, Thall PF, Berry DA. Seamlessly expanding a randomized phase II trial to phase III. Biometrics. 2002;58(4):823–31.

    PubMed  Google Scholar 

  115. Dmitrienko A, Wang MD. Bayesian predictive approach to interim monitoring in clinical trials. Stat Med. 2006;25(13):2178–95.

    PubMed  Google Scholar 

  116. Berry DA. Bayesian statistics and the efficiency and ethics of clinical trials. Stat Sci. 2004;19(1):175–87.

    Google Scholar 

  117. Cornfield J. The Bayesian outlook and its application. Biometrics. 1969;25(4):617–57.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Marc Jolicoeur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Jolicoeur, E.M., Barsness, G.W., Bourassa, M.G. (2012). Invasive and Device Management of Refractory Angina. In: Barsness, G., Holmes, D. (eds) Coronary Artery Disease. Springer, London. https://doi.org/10.1007/978-1-84628-712-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-712-1_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-460-1

  • Online ISBN: 978-1-84628-712-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics