Advertisement

Cartilage Matrix Destruction

  • Dick Heinegård
Chapter
Part of the Topics in Bone Biology book series (TBB, volume 4)

Keywords

Synovial Fluid Collagen Type Cartilage Matrix Cartilage Oligomeric Matrix Protein Cartilage Explants 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams JC, Lawler J (2004) The thrombospondins. Int J Biochem Cell Biol 36:961–968.PubMedCrossRefGoogle Scholar
  2. 2.
    Arribas J, Bech-Serra JJ, Santiago-Josefat B (2006) ADAMs, cell migration and cancer. Cancer Metastasis Rev 25:57–68.PubMedCrossRefGoogle Scholar
  3. 3.
    Atley LM, Mort JS, Lalumiere M, Eyre DR (2000) Proteolysis of human bone collagen by cathepsin K: characterization of the cleavage sites generating by cross-linked N-telopeptide neoepitope. Bone 26:241–247.PubMedCrossRefGoogle Scholar
  4. 4.
    Bengtsson E, Aspberg A, Heinegård D, Sommarin Y, Spillmann D (2000) The amino-terminal part of PRELP binds to heparin and heparan sulfate. J Biol Chem 275:40695–40702.PubMedCrossRefGoogle Scholar
  5. 5.
    Bengtsson E, Mörgelin M, Sasaki T, Timpl R, Heinegård D, Aspberg A (2002) The leucine-rich repeat protein PRELP binds perlecan and collagens and may function as a basement membrane anchor. J Biol Chem 277:15061–15068.PubMedCrossRefGoogle Scholar
  6. 6.
    Biroc SL, Gay S, Hummel K, Magill C, Palmer JT, Spencer DR, Sa S, Klaus JL, Michel BA, Rasnick D, Gay RE (2001) Cysteine protease activity is up-regulated in inflamed ankle joints of rats with adjuvant-induced arthritis and decreases with in vivo administration of a vinyl sulfone cysteine protease inhibitor. Arthritis Rheum 44:703–711.PubMedCrossRefGoogle Scholar
  7. 7.
    Budde B, Blumbach K, Ylostalo J, Zaucke F, Ehlen HW, Wagener R, la-Kokko L, Paulsson M, Bruckner P, Grassel S (2005) Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX. Mol Cell Biol 25:10465–10478.PubMedCrossRefGoogle Scholar
  8. 8.
    Camper L, Heinegård D, Lundgren-Åkerlund E (1997) Integrin alpha2beta1 is a receptor for the cartilage matrix protein chondroadherin. J Cell Biol 138:1159–1167.PubMedCrossRefGoogle Scholar
  9. 9.
    Carrino D, Önnerfjord P, Sandy J, Cs-Szabo G, Scott P, Sorell M, Heinegård D, Caplan A (2003) Age-related changes in the proteoglycan of human skin: a major catabolic fragment of decorin in adult skin. J Biol Chem 278:17566–17572.PubMedCrossRefGoogle Scholar
  10. 10.
    Carrino DA, Önnerfjord P, Sandy JD, Cs-Szabo G, Scott PG, Sorrell JM, Heinegård D, Caplan AI (2003) Age-related changes in the proteoglycans of human skin. Specific cleavage of decorin to yield a major catabolic fragment in adult skin. J Biol Chem 278:17566–17572.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen FH, Thomas AO, Hecht JT, Goldring MB, Lawler J (2005) Cartilage oligomeric matrix protein/thrombospondin 5 supports chondrocyte attachment through interaction with integrins. J Biol Chem 280:32655–32661.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen Q, Johnson D, Haudenschild D, Tondravi M, Goetinck P (1995) Cartilage matrix protein forms a type II collagen-independent filamentous network. Analysis in primary cell cultures with a retrovirus expression system. Mol Biol Cell 6:1743–1753.PubMedGoogle Scholar
  13. 13.
    Day JM, Olin AI, Murdoch AD, Canfield A, Sasaki T, Timpl R, Hardingham TE, Aspberg A (2004) Alternative splicing in the aggrecan G3 domain influences binding interactions with tenascin-C and other extracellular matrix proteins. J Biol Chem 279:12511–12518.PubMedCrossRefGoogle Scholar
  14. 14.
    Deak F, Wagener R, Kiss I, Paulsson M (1999) The matrilins: a novel family of oligomeric extracellular matrix proteins. Matrix Biol 18:55–64.PubMedCrossRefGoogle Scholar
  15. 15.
    Di Cesare PE, Chen FS, Moergelin M, Carlson CS, Leslie MP, Perris R, Fang C (2002) Matrix-matrix interaction of cartilage oligomeric matrix protein and fibronectin. Matrix Biol 21:461–470.PubMedCrossRefGoogle Scholar
  16. 16.
    Dickinson SC, Vankemmelbeke MN, Buttle DJ, Rosenberg K, Heinegard D, Hollander AP (2003) Cleavage of cartilage oligomeric matrix protein (thrombospondin-5) by matrix metalloproteinases and a disintegrin and metalloproteinase with thrombospondin motifs. Matrix Biol 22:267–278.PubMedCrossRefGoogle Scholar
  17. 17.
    Downs JT, Lane CL, Nestor NB, McLellan TJ, Kelly MA, Karam GA, Mezes PS, Pelletier JP, Otterness IG (2001) Analysis of collagenase-cleavage of type II collagen using a neoepitope ELISA. J Immunol Methods 247: 25–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4:30–35.PubMedCrossRefGoogle Scholar
  19. 19.
    Eyre DR, Pietka T, Weis MA, Wu JJ (2004) Covalent cross-linking of the NC1 domain of collagen type IX to collagen type II in cartilage. J Biol Chem 279:2568–2574.PubMedCrossRefGoogle Scholar
  20. 20.
    Eyre DR, Wu JJ, Fernandes RJ, Pietka TA, Weis MA (2002) Recent developments in cartilage research: matrix biology of the collagen II/IX/XI heterofibril network. Biochem Soc Trans 30:893–899.PubMedCrossRefGoogle Scholar
  21. 21.
    Fernandes RJ, Schmid TM, Eyre DR (2003) Assembly of collagen types II, IX and XI into nascent hetero-fibrils by a rat chondrocyte cell line. Eur J Biochem 270:3243–3250.PubMedCrossRefGoogle Scholar
  22. 22.
    Fosang AJ, Last K, Knauper V, Murphy G, Neame PJ (1996) Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett 380:17–20.PubMedCrossRefGoogle Scholar
  23. 23.
    Ganu V, Goldberg R, Peppard J, Rediske J, Melton R, Hu SI, Wang W, Duvander C, Heinegård D (1998) Inhibition of interleukin-1alpha-induced cartilage oligomeric matrix protein degradation in bovine articular cartilage by matrix metalloproteinase inhibitors: potential role for matrix metalloproteinases in the generation of cartilage oligomeric matrix protein fragments in arthritic synovial fluid. Arthritis Rheum 41:2143–2151.PubMedCrossRefGoogle Scholar
  24. 24.
    Garrigue-Antar L, Barker C, Kadler KE (2001) Identification of amino acid residues in bone morphogenetic protein-1 important for procollagen C-proteinase activity. J Biol Chem 276:26237–26242.PubMedCrossRefGoogle Scholar
  25. 25.
    Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, Flannery CR, Peluso D, Kanki K, Yang Z, Majumdar MK, Morris EA (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434:644–648.PubMedCrossRefGoogle Scholar
  26. 26.
    Goldberg R, Spirito S, Doughty J, Ganu V, Heinegård D (1995) Time dependent release of matrix components from bovine cartilage after IL-1 treatment and the relative inhibition by matrix metalloproteinase inhibitors. Trans Orthop Res Soc USA 20:125.Google Scholar
  27. 27.
    Grau S, Richards PJ, Kerr B, Hughes C, Caterson B, Williams AS, Junker U, Jones SA, Clausen T, Ehrmann M (2006) The role of human HtrA1 in arthritic disease. J Biol Chem 281:6124–6129.PubMedCrossRefGoogle Scholar
  28. 28.
    Gregory KE, Oxford JT, Chen Y, Gambee JE, Gygi SP, Aebersold R, Neame PJ, Mechling DE, Bachinger HP, Morris NP (2000) Structural organization of distinct domains within the non-collagenous N-terminal region of collagen type XI. J Biol Chem 275:11498–11506.PubMedCrossRefGoogle Scholar
  29. 29.
    Hansen U, Bruckner P (2003) Macromolecular specificity of collagen fibrillogenesis: fibrils of collagens I and XI contain a heterotypic alloyed core and a collagen I sheath. J Biol Chem 278:37352–37359.PubMedCrossRefGoogle Scholar
  30. 30.
    Hauser N, Paulsson M, Heinegård D, Mörgelin M (1996) Interaction of cartilage matrix protein with aggrecan. Increased covalent cross-linking with tissue maturation. J Biol Chem 271:32247–32252.PubMedCrossRefGoogle Scholar
  31. 31.
    Hausser H, Groning A, Hasilik A, Schonherr E, Kresse H (1994) Selective inactivity of TGF-beta/decorin complexes. FEBS Lett 353:243–245.PubMedCrossRefGoogle Scholar
  32. 32.
    Heathfield TF, Önnerfjord P, Dahlberg L, Heinegård D (2004) Cleavage of fibromodulin in cartilage explants involves removal of the N-terminal tyrosine sulfate-rich region by proteolysis at a site that is sensitive to matrix metalloproteinase-13. J Biol Chem 279:6286–6295.PubMedCrossRefGoogle Scholar
  33. 33.
    Heinegård D, Aspberg A, Franzén A, Lorenzo P (2002) Non-collagenous glycoproteins in the extracellular matrix, with particular reference to cartilage and bone. In: Royce P, Steinmann B, eds. Connective Tissue and Its Heritable Disorders: Molecular, Genetic, and Medical Aspects. New York: Wiley-Liss, pp. 271–291.CrossRefGoogle Scholar
  34. 34.
    Hildebrand A, Romaris M, Rasmussen LM, Heinegård D, Twardzik DR, Border WA, Ruoslahti E (1994) Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 302(pt 2):527–534.PubMedGoogle Scholar
  35. 35.
    Holmes D, Kadler K (2006) The 10+4 microfibril structure of thin cartilage fibrils. Proc Natl Acad Sci 105:17249–17254.CrossRefGoogle Scholar
  36. 36.
    Homandberg GA, Costa V, Wen C (2002) Fibronectin fragments active in chondrocytic chondrolysis can be chemically cross-linked to the alpha5 integrin receptor subunit. Osteoarthritis Cartilage 10:938–949.PubMedCrossRefGoogle Scholar
  37. 37.
    Homandberg GA, Hui F, Wen C, Purple C, Bewsey K, Koepp H, Huch K, Harris A (1997) Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem J 321(pt 3):751–757.PubMedGoogle Scholar
  38. 38.
    Homandberg GA, Meyers R, Williams JM (1993) Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo. J Rheumatol 20:1378–1382.PubMedGoogle Scholar
  39. 39.
    Ikegawa S, Kawamura S, Takahashi A, Nakamura T, Kamatani N (2006) Replication of association of the D-repeat polymorphism in asporin with osteoarthristis. Arthritis Res Ther 8:403.PubMedCrossRefGoogle Scholar
  40. 40.
    Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release IMAI1997. Biochem J 322(pt 3): 809–814.PubMedGoogle Scholar
  41. 41.
    Itoh Y, Ito N, Nagase H, Evans RD, Bird SA, Seiki M (2006) Cell surface collagenolysis requires homodimerization of the membrane-bound collagenase MT1-MMP. Mol Biol Cell 17:5390–5399.PubMedCrossRefGoogle Scholar
  42. 42.
    Johnson A, Smith R, Saxne T, Hickery M, Heinegård D (2004) Fibronectin fragments cause release and degradation of collagen-binding molecules from equine explant cultures. Osteoarthritis Cartilage 12:149–159.PubMedCrossRefGoogle Scholar
  43. 43.
    Johnson K, Farley D, Hu SI, Terkeltaub R (2003) One of two chondrocyte-expressed isoforms of cartilage intermediate-layer protein functions as an insulin-like growth factor 1 antagonist. Arthritis Rheum 48:1302–1314.PubMedCrossRefGoogle Scholar
  44. 44.
    Jones GC, Riley GP (2005) ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther 7:160–169.PubMedCrossRefGoogle Scholar
  45. 45.
    Kaliakatsos M, Tzetis M, Kanavakis E, Fytili P, Chouliaras G, Karachalios T, Malizos K, Tsezou A (2006) Asporin and knee osteoarthritis in patients of Greek origin. Osteoarthritis Cartilage 14:609–611.PubMedCrossRefGoogle Scholar
  46. 46.
    Kashiwagi M, Enghild JJ, Gendron C, Hughes C, Caterson B, Itoh Y, Nagase H (2004) Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing. J Biol Chem 279:10109–10119.PubMedCrossRefGoogle Scholar
  47. 47.
    Kvansakul M, Adams JC, Hohenester E (2004) Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. EMBO J 23:1223–1233.PubMedCrossRefGoogle Scholar
  48. 48.
    Lohmander LS, Atley LM, Pietka TA, Eyre DR (2003) The release of crosslinked peptides from type II collagen into human synovial fluid is increased soon after joint injury and in osteoarthritis. Arthritis Rheum 48:3130–3139.PubMedCrossRefGoogle Scholar
  49. 49.
    Lohmander LS, Neame PJ, Sandy JD (1993) The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum 36:1214–1222.PubMedCrossRefGoogle Scholar
  50. 50.
    Magnusson MK, Mosher DF (1998) Fibronectin: structure, assembly, and cardiovascular implications. Arterioscler Thromb Vasc Biol 18:1363–1370.PubMedGoogle Scholar
  51. 51.
    Mann HH, Ozbek S, Engel J, Paulsson M, Wagener R (2004) Interactions between the cartilage oligomeric matrix protein and matrilins. Implications for matrix assembly and the pathogenesis of chondrodysplasias. J Biol Chem 279:25294–25298.PubMedCrossRefGoogle Scholar
  52. 52.
    Månsson B, Wenglén C, Mörgelin M, Saxne T, Heinegård D (2001) Association of chondroadherin with collagen type II. J Biol Chem 276:32883–32888.PubMedCrossRefGoogle Scholar
  53. 53.
    Matyas JR, Atley L, Ionescu M, Eyre DR, Poole AR (2004) Analysis of cartilage biomarkers in the early phases of canine experimental osteoarthritis. Arthritis Rheum 50:543–552.PubMedCrossRefGoogle Scholar
  54. 54.
    McCluskey RT, Thomas L (1958) The removal of cartilage matrix, in vivo, by papain: identification of crystalline papain protease as the cause of the phenomenon. J Exp Med 108:371–384.PubMedCrossRefGoogle Scholar
  55. 55.
    Melching LI, Fisher WD, Lee ER, Mort JS, Roughley PJ (2006) The cleavage of biglycan by aggrecanases. Osteoarthritis Cartilage 14:1147–1154.PubMedCrossRefGoogle Scholar
  56. 56.
    Monfort J, Tardif G, Reboul P, Mineau F, Roughley P, Pelletier JP, Martel-Pelletier J (2006) Degradation of small leucine-rich repeat proteoglycans by matrix metalloprotease-13: identification of a new biglycan cleavage site. Arthritis Res Ther 8:R26.PubMedCrossRefGoogle Scholar
  57. 57.
    Murphy G, Knauper V, Atkinson S, Butler G, English W, Hutton M, Stracke J, Clark I (2002) Matrix metalloproteinases in arthritic disease. Arthritis Res 4(suppl 3):S39–S49.PubMedCrossRefGoogle Scholar
  58. 58.
    Mustafa Z, Dowling B, Chapman K, Sinsheimer JS, Carr A, Loughlin J (2005) Investigating the aspartic acid (D) repeat of asporin as a risk factor for osteoarthritis in a UK Caucasian population. Arthritis Rheum 52:3502–3506.PubMedCrossRefGoogle Scholar
  59. 59.
    Neame PJ, Young CN, Treep JT (1990) Isolation and primary structure of PARP, a 24-kDa proline- and arginine-rich protein from bovine cartilage closely related to the NH2-terminal domain in collagen alpha 1 (XI). J Biol Chem 265:20401–20408.PubMedGoogle Scholar
  60. 60.
    Oldberg Å, Antonsson P, Lindblom K, Heinegård D (1992) COMP (cartilage oligomeric matrix protein) is structurally related to the thrombospondins. J Biol Chem 267:22346–22350.PubMedGoogle Scholar
  61. 61.
    Önnerfjord P, Heathfield TF, Heinegård D (2004) Identification of tyrosine sulfation in extracellular leucine-rich repeat proteins using mass spectrometry. J Biol Chem 279:26–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Oshita H, Sandy JD, Suzuki K, Akaike A, Bai Y, Sasaki T, Shimizu K (2004) Mature bovine articular cartilage contains abundant aggrecan that is C-terminally truncated at Ala719-Ala720, a site which is readily cleaved by m-calpain. Biochem J 382:253–259.PubMedCrossRefGoogle Scholar
  63. 63.
    Pihlajamaa T, Lankinen H, Ylostalo J, Valmu L, Jaalinoja J, Zaucke F, Spitznagel L, Gosling S, Puustinen A, Morgelin M, Peranen J, Maurer P, la-Kokko L, Kilpelainen I (2004) Characterization of recombinant amino-terminal NC4 domain of human collagen IX: interaction with glycosaminoglycans and cartilage oligomeric matrix protein. J Biol Chem 279: 24265–24273.PubMedCrossRefGoogle Scholar
  64. 64.
    Poole AR, Kobayashi M, Yasuda T, Laverty S, Mwale F, Kojima T, Sakai T, Wahl C, El-Maadawy S, Webb G, Tchetina E, Wu W (2002) Type II collagen degradation and its regulation in articular cartilage in osteoarthritis. Ann Rheum Dis 61(suppl 2):ii78–ii81.PubMedGoogle Scholar
  65. 65.
    Poole AR, Nelson F, Dahlberg L, Tchetina E, Kobayashi M, Yasuda T, Laverty S, Squires G, Kojima T, Wu W, Billinghurst RC (2003) Proteolysis of the collagen fibril in osteoarthritis. Biochem Soc Symp 70:115–123.PubMedGoogle Scholar
  66. 66.
    Porter S, Clark IM, Kevorkian L, Edwards DR (2005) The ADAMTS metalloproteinases. Biochem J 386:15–27.PubMedCrossRefGoogle Scholar
  67. 67.
    Pratta MA, Yao W, Decicco C, Tortorella MD, Liu RQ, Copeland RA, Magolda R, Newton RC, Trzaskos JM, Arner EC (2003) Aggrecan protects cartilage collagen from proteolytic cleavage. J Biol Chem 278:45539–45545.PubMedCrossRefGoogle Scholar
  68. 68.
    Rodriguez-Lopez J, Pombo-Suarez M, Liz M, Gomez-Reino JJ, Gonzalez A (2006) Lack of association of a variable number of aspartic acid residues in the asporin gene with osteoarthritis susceptibility: case-control studies in Spanish Caucasians. Arthritis Res Ther 8:R55.Google Scholar
  69. 69.
    Rosenberg K, Olsson H, Mörgelin M, Heinegård D (1998) Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem 273:20397–20403.PubMedCrossRefGoogle Scholar
  70. 70.
    Roughley PJ, White RJ, Magny MC, Liu J, Pearce RH, Mort JS, (1993) Non-proteoglycan forms of biglycan increase with age in human articular cartilage. Biochem J 295:421–426.PubMedGoogle Scholar
  71. 71.
    Saklatvala J, Dingle JT (1980) Identification of catabolin, a protein fro synovium which induces degradation of cartilage in organ culture. Biochem Biophys Res Commun 96:1225–1231.PubMedCrossRefGoogle Scholar
  72. 72.
    Sandy JD, Neame PJ, Boynton RE, Flannery CR (1991) Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J Biol Chem 266:8683–8685.PubMedGoogle Scholar
  73. 73.
    Sandy JD, Verscharen C (2001) Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo 29. Biochem J 358:615–626.PubMedCrossRefGoogle Scholar
  74. 74.
    Saxne T, Heinegård D (1992) Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood [published erratum appears in Br J Rheumatol 1993 32(3):247]. Br J Rheumatol 31:583–591.PubMedCrossRefGoogle Scholar
  75. 75.
    Saxne T, Heinegård D (1992) Synovial fluid analysis of two groups of proteoglycan epitopes distinguishes early and late cartilage lesions. Arthritis Rheum 35:385–390.PubMedCrossRefGoogle Scholar
  76. 76.
    Schönherr E, Sunderkotter C, Iozzo RV, Schaefer L (2005) Decorin, a novel player in the insulin-like growth factor system. J Biol Chem 280:15767–15772.PubMedCrossRefGoogle Scholar
  77. 77.
    Scott PG, Dodd CM, Bergmann EM, Sheehan JK, Bishop PN (2006) Crystal structure of the biglycan dimer and evidence that dimerization is essential for folding and stability of class I small leucine-rich repeat proteoglycans. J Biol Chem 281:13324–13332.PubMedCrossRefGoogle Scholar
  78. 78.
    Scott PG, McEwan PA, Dodd CM, Bergmann EM, Bishop PN, Bella J (2004) Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan. Proc Natl Acad Sci USA 101:15633–15638.PubMedCrossRefGoogle Scholar
  79. 79.
    Svensson L, Heinegård D, Oldberg Å (1995) Decorin-binding sites for collagen type I are mainly located in leucine- rich repeats 4–5. J Biol Chem 270:20712–20716.PubMedCrossRefGoogle Scholar
  80. 80.
    Sztrolovics R, White RJ, Poole AR, Mort JS, Roughley PJ (1999) Resistance of small leucine-rich repeat proteoglycans to proteolytic degradation during interleukin-1-stimulated cartilage catabolism. Biochem J 339:571–577.PubMedCrossRefGoogle Scholar
  81. 81.
    Thomas L (1956) Reversible collapse of rabbit ears after intravenous papain, and prevention of recovery by cortisone. J Exp Med 104:245–252.PubMedCrossRefGoogle Scholar
  82. 82.
    Thur J, Rosenberg K, Nitsche DP, Pihlajamaa T, Ala-Kokko L, Heinegård D, Paulsson M, Maurer P (2001) Mutations in cartilage oligomeric matrix protein causing pseudoachondroplasia and multiple epiphyseal dysplasia affect binding of calcium and collagen I, II, and IX. J Biol Chem 276:6083–6092.PubMedCrossRefGoogle Scholar
  83. 83.
    Tomasini-Johansson BR, Annis DS, Mosher DF (2006) The N-terminal 70-kDa fragment of fibronectin binds to cell surface fibronectin assembly sites in the absence of intact fibronectin. Matrix Biol 25:282–293.PubMedCrossRefGoogle Scholar
  84. 84.
    Tondravi MM, Winterbottom N, Haudenschild DR, Goetinck PF (1993) Cartilage matrix protein binds to collagen and plays a role in collagen fibrillogenesis. Prog Clin Biol Res 383B:515–522.PubMedGoogle Scholar
  85. 85.
    Tortorella MD, Liu RQ, Burn T, Newton RC, Arner E (2002) Characterization of human aggrecanase 2 (ADAM-TS5): substrate specificity studies and comparison with aggrecanase 1 (ADAM-TS4). Matrix Biol 21:499–511.PubMedCrossRefGoogle Scholar
  86. 86.
    Tortorella MD, Pratta M, Liu RQ, Austin J, Ross OH, Abbaszade I, Burn T, Arner E (2000) Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J Biol Chem 275:18566–18573.PubMedCrossRefGoogle Scholar
  87. 87.
    Tyler JA (1985) Chondrocyte-mediated depletion of articular cartilage proteoglycans in vitro. Biochem J 225:493–507.PubMedGoogle Scholar
  88. 88.
    Vaughan L, Mendler M, Huber S, Bruckner P, Winterhalter KH, Irwin MI, Mayne R (1988) D-periodic distribution of collagen type IX along cartilage fibrils. J Cell Biol 106:991–997.PubMedCrossRefGoogle Scholar
  89. 89.
    Vilim V, Lenz ME, Vytasek R, Masuda K, Pavelka K, Kuettner KE, Thonar EJ (1997) Characterization of monoclonal antibodies recognizing different fragments of cartilage oligomeric matrix protein in human body fluids. Arch Biochem Biophys 341: 8–16.PubMedCrossRefGoogle Scholar
  90. 90.
    Wiberg C, Klatt AR, Wagener R, Paulsson M, Bateman JF, Heinegård D, Mörgelin M (2003) Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J Biol Chem 278:37698–37704.PubMedCrossRefGoogle Scholar
  91. 91.
    Woods A, Longley RL, Tumova S, Couchman JR (2000) Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts. Arch Biochem Biophys 374:66–72.PubMedCrossRefGoogle Scholar
  92. 92.
    Wu JJ, Eyre DR (1998) Matrilin-3 forms disulfide-linked oligomers with matrilin-1 in bovine epiphyseal cartilage. J Biol Chem 273:17433–17438.PubMedCrossRefGoogle Scholar
  93. 93.
    Xie DL, Hui F, Meyers R, Homandberg GA (1994) Cartilage chondrolysis by fibronectin fragments is associated with release of several proteinases: stromelysin plays a major role in chondrolysis. Arch Biochem Biophys 311:205–212.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Dick Heinegård

There are no affiliations available

Personalised recommendations