Biomechanical Aspects: Joint Injury and Osteoarthritis

  • Diana H. Chai
  • Anna L. Stevens
  • Alan J. Grodzinsky
Part of the Topics in Bone Biology book series (TBB, volume 4)


Articular Cartilage Joint Injury Cartilage Explants Osteoarthritis Cartilage Biomechanical Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbaszade I, Liu RQ, Yang F, Rosenfeld SA, Ross OH, Link JR, Ellis DM, Tortorella MD, Pratta MA, Hollis JM, Wynn R, Duke JL, George HJ, Hillman MC, Jr., Murphy K, Wiswall BH, Copeland RA, Decicco CP, Bruckner R, Nagase H, Itoh Y, Newton RC, Magolda RL, Trzaskos JM, Burn TC, et al. (1999) Cloning and characterization of adamts11, an aggrecanase from the adamts family. J Biol Chem 274:23443–50.PubMedCrossRefGoogle Scholar
  2. 2.
    Aigner T, Kim HA (2002) Apoptosis and cellular vitality: Issues in osteoarthritic cartilage degeneration. Arthritis Rheum 46:1986–96.PubMedCrossRefGoogle Scholar
  3. 3.
    Aigner T, McKenna L (2002) Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol Life Sci 59:5–18.PubMedCrossRefGoogle Scholar
  4. 4.
    Aigner T, Zien A, Gehrsitz A, Gebhard PM, McKenna L (2001) Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum 44:2777–89.PubMedCrossRefGoogle Scholar
  5. 5.
    Armstrong CG, Bahrani AS, Gardner DL (1979) In vitro measurement of articular cartilage deformations in the intact human hip joint under load. J Bone Joint Surg Am 61:744–55.PubMedGoogle Scholar
  6. 6.
    Armstrong CG, Lai WM, Mow VC (1984) An analysis of the unconfined compression of articular cartilage. J Biomech Eng 106:165–73.PubMedGoogle Scholar
  7. 7.
    Armstrong CG, Mow VC (1982) Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am 64:88–94.PubMedGoogle Scholar
  8. 8.
    Arner EC, Di Meo TM, Ruhl DM, Pratta MA (1989) In vivo studies on the effects of human recombinant interleukin-1 beta on articular cartilage. Agents Actions 27:254–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Ateshian GA, Kwak SD, Soslowsky LJ, Mow VC (1994) A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods. J Biomech 27:111–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Attur MG, Dave M, Akamatsu M, Katoh M, Amin AR (2002) Osteoarthritis or osteoarthrosis: The definition of inflammation becomes a semantic issue in the genomic era of molecular medicine. Osteoarthritis Cartilage 10:1–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Attur MG, Dave MN, Clancy RM, Patel IR, Abramson SB, Amin AR (2000) Functional genomic analysis in arthritis-affected cartilage: Yin-yang regulation of inflammatory mediators by alpha 5 beta 1 and alpha v beta 3 integrins. J Immunol 164:2684–91.PubMedGoogle Scholar
  12. 12.
    Boschetti F, Pennati G, Gervaso F, Peretti GM, Dubini G (2004) Biomechanical properties of human articular cartilage under compressive loads. Biorheology 41:159–66.PubMedGoogle Scholar
  13. 13.
    Brocklehurst R, Bayliss MT, Maroudas A, Coysh HL, Freeman MA, Revell PA, Ali SY (1984) The composition of normal and osteoarthritic articular cartilage from human knee joints. With special reference to unicompartmental replacement and osteotomy of the knee. J Bone Joint Surg Am 66:95–106.PubMedGoogle Scholar
  14. 14.
    Buckwalter JA (2002) Articular cartilage injuries. Clin Orthop Relat Res 21–37.Google Scholar
  15. 15.
    Buckwalter JA, Brown TD (2004) Joint injury, repair, and remodeling: Roles in post-traumatic osteoarthritis. Clin Orthop Relat Res 7–16.Google Scholar
  16. 16.
    Buschmann MD, Kim YJ, Wong M, Frank E, Hunziker EB, Grodzinsky AJ (1999) Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch Biochem Biophys 366:1–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Cameron M, Buchgraber A, Passler H, Vogt M, Thonar E, Fu F, Evans CH (1997) The natural history of the anterior cruciate ligament-deficient knee. Changes in synovial fluid cytokine and keratan sulfate concentrations. Am J Sports Med 25:751–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Cameron ML, Fu FH, Paessler HH, Schneider M, Evans CH (1994) Synovial fluid cytokine concentrations as possible prognostic indicators in the acl-deficient knee. Knee Surg Sports Traumatol Arthrosc 2:38–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Chan PS, Schlueter AE, Coussens PM, Rosa GJ, Haut RC, Orth MW (2005) Gene expression profile of mechanically impacted bovine articular cartilage explants. J Orthop Res 23:1146–51.PubMedCrossRefGoogle Scholar
  20. 20.
    Chen CT, Bhargava M, Lin PM, Torzilli PA (2003) Time, stress, and location dependent chondrocyte death and collagen damage in cyclically loaded articular cartilage. J Orthop Res 21:888–98.PubMedCrossRefGoogle Scholar
  21. 21.
    Chen CT, Burton-Wurster N, Borden C, Hueffer K, Bloom SE, Lust G (2001) Chondrocyte necrosis and apoptosis in impact damaged articular cartilage. J Orthop Res 19:703–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Chen CT, Burton-Wurster N, Lust G, Bank RA, Tekoppele JM (1999) Compositional and metabolic changes in damaged cartilage are peak-stress, stress-rate, and loading-duration dependent. J Orthop Res 17:870–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Clements KM, Bee ZC, Crossingham GV, Adams MA, Sharif M (2001) How severe must repetitive loading be to kill chondrocytes in articular cartilage? Osteoarthritis Cartilage 9:499–507.PubMedCrossRefGoogle Scholar
  24. 24.
    D’Lima DD, Hashimoto S, Chen PC, Colwell CW, Jr., Lotz MK (2001) Human chondrocyte apoptosis in response to mechanical injury. Osteoarthritis Cartilage 9:712–9.PubMedCrossRefGoogle Scholar
  25. 25.
    D’Lima DD, Hashimoto S, Chen PC, Lotz MK, Colwell CW, Jr. (2001) Cartilage injury induces chondrocyte apoptosis. J Bone Joint Surg Am 83-A Suppl 2:19–21.PubMedGoogle Scholar
  26. 26.
    D’Lima DD, Hashimoto S, Colwell CW, Jr., Lotz MK (1998) Chondrocyte apoptosis in response to mechanical injury. Arthritis Rheum 41:S41.CrossRefGoogle Scholar
  27. 27.
    Dean D, Han L, Grodzinsky AJ, Ortiz C (2006) Compressive nanomechanics of opposing aggrecan macromolecules. J Biomech 39:2555–2565.PubMedCrossRefGoogle Scholar
  28. 28.
    DiMicco MA, Patwari P, Siparsky PN, Kumar S, Pratta MA, Lark MW, Kim YJ, Grodzinsky AJ (2004) Mechanisms and kinetics of glycosaminoglycan release following in vitro cartilage injury. Arthritis Rheum 50:840–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Duda GN, Eilers M, Loh L, Hoffman JE, Kaab M, Schaser K (2001) Chondrocyte death precedes structural damage in blunt impact trauma. Clin Orthop 302–9.Google Scholar
  30. 30.
    Ewers BJ, Dvoracek-Driksna D, Orth MW, Haut RC (2001) The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading. J Orthop Res 19:779–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Fanning P, Emkey G, Smith R, Grodzinsky A, Trippel S (2001) Response of cartilage to mechanical loading is correlated with sustained ERK1/2 activation. Transactions of the Orthopaedic Research Society 26:172.Google Scholar
  32. 32.
    Farquhar T, Xia Y, Mann K, Bertram J, Burton-Wurster N, Jelinski L, Lust G (1996) Swelling and fibronectin accumulation in articular cartilage explants after cyclical impact. Journal of Orthopaedic Research 14:417–423.PubMedCrossRefGoogle Scholar
  33. 33.
    Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, Kington RS, Lane NE, Nevitt MC, Zhang Y, Sowers M, McAlindon T, Spector TD, Poole AR, Yanovski SZ, Ateshian G, Sharma L, Buckwalter JA, Brandt KD, Fries JF (2000) Osteoarthritis: New insights. Part 1: The disease and its risk factors. Ann Intern Med 133:635–46.PubMedGoogle Scholar
  34. 34.
    Fischer KJ, Jacobs CR, Levenston ME, Cody DD, Carter DR (1999) Proximal femoral density patterns are consistent with bicentric joint loads. Comput Methods Biomech Biomed Engin 2:271–283.PubMedCrossRefGoogle Scholar
  35. 35.
    Fithian DC, Paxton EW, Stone ML, Luetzow WF, Csintalan RP, Phelan D, Daniel DM (2005) Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 33:335–46.PubMedCrossRefGoogle Scholar
  36. 36.
    Frank EH, Jin M, Loening AM, Levenston ME, Grodzinsky AJ (2000) A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J Biomech 33:1523–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Franz T, Hasler EM, Hagg R, Weiler C, Jakob RP, Mainil-Varlet P(2001) In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthritis Cartilage 9:582–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Fujii T, Sun YL, An KN, Luo ZP (2002) Mechanical properties of single hyaluronan molecules. J Biomech 35:527–31.PubMedCrossRefGoogle Scholar
  39. 39.
    Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ (2000) Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann Intern Med 133:321–8.PubMedGoogle Scholar
  40. 40.
    Goldring MB (2006) Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Practice & Research: Clinical Rheumatology 20:1003–1025.PubMedGoogle Scholar
  41. 41.
    Grogan SP, Aklin B, Frenz M, Brunner T, Schaffner T, Mainil-Varlet P(2002) In vitro model for the study of necrosis and apoptosis in native cartilage. J Pathol 198:5–13.PubMedCrossRefGoogle Scholar
  42. 42.
    Guilak F (1995) Compression-induced changes in the shape and volume of the chondrocyte nucleus. Journal of Biomechanics 28:1529–1541.PubMedCrossRefGoogle Scholar
  43. 43.
    Guilak F, Mow VC (2000) The mechanical environment of the chondrocyte: A biphasic finite element model of cell-matrix interactions in articular cartilage. J Biomech 33:1663–73.PubMedCrossRefGoogle Scholar
  44. 44.
    Herberhold C, Faber S, Stammberger T, Steinlechner M, Putz R, Englmeier KH, Reiser M, Eckstein F (1999) In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J Biomech 32:1287–95.PubMedCrossRefGoogle Scholar
  45. 45.
    Hermansson M, Sawaji Y, Bolton M, Alexander S, Wallace A, Begum S, Wait R, Saklatvala J (2004) Proteomic analysis of articular cartilage shows increased type II collagen synthesis in osteoarthritis and expression of inhibin betaa (activin a), a regulatory molecule for chondrocytes. J Biol Chem 279:43514–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Hodge WA, Fijan RS, Carlson KL, Burgess RG, Harris WH, Mann RW (1986) Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci U S A 83:2879–83.PubMedCrossRefGoogle Scholar
  47. 47.
    Hung CT, Henshaw DR, Wang CC, Mauck RL, Raia F, Palmer G, Chao PH, Mow VC, Ratcliffe A, Valhmu WB (2000) Mitogen-activated protein kinase signaling in bovine articular chondrocytes in response to fluid flow does not require calcium mobilization. J Biomech 33:73–80.PubMedCrossRefGoogle Scholar
  48. 48.
    Ilic MZ, Vankemmelbeke MN, Holen I, Buttle DJ, Clem Robinson H, Handley CJ (2000) Bovine joint capsule and fibroblasts derived from joint capsule express aggrecanase activity. Matrix Biol 19:257–65.PubMedCrossRefGoogle Scholar
  49. 49.
    Irie K, Uchiyama E, Iwaso H (2003) Intraarticular inflammatory cytokines in acute anterior cruciate ligament injured knee. Knee 10:93–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Jeffrey JE, Gregory DW, Aspden RM (1995) Matrix damage and chondrocyte viability following a single impact load on articular cartilage. Archives of Biochemistry and Biophysics 322:87–96.PubMedCrossRefGoogle Scholar
  51. 51.
    Jeffrey JE, Thomson LA, Aspden RM (1997) Matrix loss and synthesis following a single impact load on articular cartilage in vitro. Biochimica et Biophysica Acta 1334:223–232.PubMedGoogle Scholar
  52. 52.
    Jin M, Fanning P, Emkey G, Wuerz T, Trippel S, Grodzinsky A (2002) Upregulation of ERK1/2 phosphorylation and transcriptional level of type ii collagen and aggrecan core protein in response to tissue shear deformation in cartilage explants. Transactions of the Orthopaedic Research Society 27:31.Google Scholar
  53. 53.
    Jones WR, Ting-Beall HP, Lee GM, Kelley SS, Hochmuth RM, Guilak F (1999) Alterations in the young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J Biomech 32: 119–27.PubMedCrossRefGoogle Scholar
  54. 54.
    Jortikka MO, Parkkinen JJ, Inkinen RI, Karner J, Jarvelainen HT, Nelimarkka LO, Tammi MI, Lammi MJ (2000) The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure. Arch Biochem Biophys 374:172–80.PubMedCrossRefGoogle Scholar
  55. 55.
    Kasper D, Braunwald E, Fauci A, SL H, Hauser D, Longo D, Jameson L (2004) Harrison’s principles of internal medicine, 16 th ed. McGraw-Hill Professional.Google Scholar
  56. 56.
    Kim Y-J, Grodzinsky AJ, Plaas AHK (1996) Compression of cartilage results in differential effects on biosynthetic pathways for aggrecan link protein, and hyaluronan. Archives of Biochemistry and Biophysics 328:331–340.PubMedCrossRefGoogle Scholar
  57. 57.
    Kleemann RU, Krocker D, Cedraro A, Tuischer J, Duda GN (2005) Altered cartilage mechanics and histology in knee osteoarthritis: Relation to clinical assessment (ICRS grade). Osteoarthritis Cartilage 13:958–63.PubMedCrossRefGoogle Scholar
  58. 58.
    Kurz B, Jin M, Patwari P, Cheng DM, Lark MW, Grodzinsky AJ (2001) Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J Orthop Res 19:1140–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Kurz B, Lemke AK, Fay J, Pufe T, Grodzinsky AJ, Schunke M (2005) Pathomechanisms of cartilage destruction by mechanical injury. Ann Anat 187: 473–85.PubMedCrossRefGoogle Scholar
  60. 60.
    Lammi MJ (2004) Current perspectives on cartilage and chondrocyte mechanobiology. Biorheology 41:593–6.PubMedGoogle Scholar
  61. 61.
    Lee DA, Knight MM, Bolton JF, Idowu BD, Kayser MV, Bader DL (2000) Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J Biomech 33:81–95.PubMedCrossRefGoogle Scholar
  62. 62.
    Lee JH (2005) Chondrocyte response to in vitro mechanical injury and co-culture with joint capsule tissue. PhD thesis. Cambridge: Massachusetts Institute of Technology.Google Scholar
  63. 63.
    Lee JH, Bai Y, Flannery CR, Sandy JD, Plaas A, Grodzinksy AJ (2006) Cartilage mechanical injury and co-culture with joint capsule tissue increase abundance of ADAMTS-5 protein and aggrecan g1-nitege product. Chicago: Annual Meeting of the Orthopaedic Research Society, 31:214.Google Scholar
  64. 64.
    Lee JH, Fitzgerald JB, Dimicco MA, Grodzinsky AJ (2005) Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum 52:2386–95.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee JH, Kisiday J, Grodzinsky AJ (2003) Tissue-engineered versus native cartilage: Linkage between cellular mechano-transduction and biomechanical properties. Novartis Found Symp 249:52–64; discussion 64–9, 170–4, 239–41.PubMedCrossRefGoogle Scholar
  66. 66.
    Levenston ME, Frank EH, Grodzinsky AJ (1999) Electrokinetic and poroelastic coupling during finite deformations of charged porous media. Journal of Applied Mechanics-Transactions of the Asme 66:323–333.Google Scholar
  67. 67.
    Levin AS, Chen CT, Torzilli PA (2005) Effect of tissue maturity on cell viability in load-injured articular cartilage explants. Osteoarthritis Cartilage 13:488–96.PubMedCrossRefGoogle Scholar
  68. 68.
    Li KW, Wang AS, Sah RL, DiMicco MA (2002) Map kinase signaling in chondrocytes in explant and monolayer culture: Effects of compression and il-1. Transactions of the Orthopaedic Research Society 27:267.Google Scholar
  69. 69.
    Li L, Shirazi-Adl A, Buschmann MD (2003) Investigation of mechanical behavior of articular cartilage by fibril reinforced poroelastic models. Biorheology 40:227–33.PubMedGoogle Scholar
  70. 70.
    Loening AM, James IE, Levenston ME, Badger AM, Frank EH, Kurz B, Nuttall ME, Hung HH, Blake SM, Grodzinsky AJ, Lark MW (2000) Injurious mechanical compression of bovine articular cartilage induces chondrocyte apoptosis. Arch Biochem Biophys 381:205–12.PubMedCrossRefGoogle Scholar
  71. 71.
    Lohmander LS, Atley LM, Peitka TA (2000) The release of cross-linked peptides from type ii collagen into joint fluid and serum is increased in osteoarthritis and after joint injury. Transactions of the Orthopaedic Research Society 25:236.Google Scholar
  72. 72.
    Lohmander LS, Atley LM, Pietka TA, Eyre DR (2003) The release of crosslinked peptides from type ii collagen into human synovial fluid is increased soon after joint injury and in osteoarthritis. Arthritis Rheum 48:3130–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Lohmander LS, Hoerrner LA, Dahlberg L, Roos H, Bjornsson S, Lark MW (1993) Stromelysin, tissue inhibitor of metalloproteinases and proteoglycan fragments in human knee joint fluid after injury. J Rheumatol 20:1362–8.PubMedGoogle Scholar
  74. 74.
    Lohmander LS, Hoerrner LA, Lark MW (1993) Metalloproteinases, tissue inhibitor, and proteoglycan fragments in knee synovial fluids in human osetoarthritis. Arthritis and Rheumatism 36:181–189.PubMedCrossRefGoogle Scholar
  75. 75.
    Lohmander LS, Ionescu M, Jugessur H, Poole AR (1999) Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. Arthritis Rheum 42:534–44.PubMedCrossRefGoogle Scholar
  76. 76.
    Lohmander LS, Roos H (1994) Knee ligament injury, surgery and osteoarthrosis. Truth or consequences? Acta Orthop Scand 65:605–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Lohmander LS, Saxne T, Heinegard DK (1994) Release of cartilage oligomeric matrix protein (COMP) into joint fluid after knee injury and in osteoarthritis. Ann Rheum Dis 53:8–13.PubMedGoogle Scholar
  78. 78.
    Lohmander LS, Yoshihara Y, Roos H, Kobayashi T, Yamada H, Shinmei M (1996) Procollagen II C-propeptide in joint fluid: Changes in concentration with age, time after knee injury, and osteoarthritis. J Rheumatol 23:1765–9.PubMedGoogle Scholar
  79. 79.
    Lucchinetti E, Adams CS, Horton WE, Jr., Torzilli PA (2002) Cartilage viability after repetitive loading: A preliminary report. Osteoarthritis Cartilage 10:71–81.PubMedCrossRefGoogle Scholar
  80. 80.
    Marlovits S, Hombauer M, Tamandl D, Vecsei V, Schlegel W (2004) Quantitative analysis of gene expression in human articular chondrocytes in monolayer culture. Int J Mol Med 13:281–7.PubMedGoogle Scholar
  81. 81.
    Maroudas A (1979) Physicochemical properties of articular cartilage. In Freeman MAR, ed. Adult articular cartilage, 2nd ed. England: Tunbridge Wells, 215–290.Google Scholar
  82. 82.
    Martin I, Jakob M, Schafer D, Dick W, Spagnoli G, Heberer M (2001) Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthritis Cartilage 9:112–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Millward-Sadler SJ, Wright MO, Davies LW, Nuki G, Salter DM (2000) Mechanotransduction via integrins and interleukin-4 results in altered aggrecan and matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic, human articular chondrocytes. Arthritis Rheum 43:2091–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Morel V, Quinn TM (2004) Cartilage injury by ramp compression near the gel diffusion rate. J Orthop Res 22:145–51.PubMedCrossRefGoogle Scholar
  85. 85.
    Murphy G, Knauper V, Atkinson S, Butler G, English W, Hutton M, Stracke J, Clark I (2002) Matrix metalloproteinases in arthritic disease. Arthritis Res 4 Suppl 3:S39–49.PubMedCrossRefGoogle Scholar
  86. 86.
    Newberry WN, Garcia JJ, Mackenzie CD, Decamp CE, Haut RC (1998) Analysis of acute mechanical insult in an animal model of post-traumatic osteoarthrosis. J Biomech Eng 120:704–9.PubMedGoogle Scholar
  87. 87.
    Patwari P, Cheng DM, Cole AA, Kuettner KE, Grodzinsky AJ (2007) Analysis of the relationship between peak stress and proteoglycan loss following injurious compression of human post-mortem knee and ankle cartilage. Biomech Model Mechanobiol 6:83–89PubMedCrossRefGoogle Scholar
  88. 88.
    Patwari P, Cook MN, DiMicco MA, Blake SM, James IE, Kumar S, Cole AA, Lark MW, Grodzinsky AJ (2003) Proteoglycan degradation after injurious compression of bovine and human articular cartilage in vitro: Interaction with exogenous cytokines. Arthritis Rheum 48:1292–301.PubMedCrossRefGoogle Scholar
  89. 89.
    Patwari P, Fay J, Cook MN, Badger AM, Kerin AJ, Lark MW, Grodzinsky AJ (2001) In vitro models for investigation of the effects of acute mechanical injury on cartilage. Clin Orthop Relat Res S61–71.Google Scholar
  90. 90.
    Patwari P, Gaschen V, James IE, Berger E, Blake SM, Lark MW, Grodzinsky AJ, Hunziker EB (2004) Ultrastructural quantification of cell death after injurious compression of bovine calf articular cartilage. Osteoarthritis Cartilage 12:245–52.PubMedCrossRefGoogle Scholar
  91. 91.
    Patwari P, Norris SA, Kumar S, Lark MW, Grodzinsky AJ (2003) Inhibition of bovine cartilage biosynthesis by coincubation of joint capsule tissue is mediated by an interleukin-1-independent signalling pathway. New Orleans: Annual Meeting of the Orthopaedic Research Society, 28:158.Google Scholar
  92. 92.
    Pelletier JP, Martel-Pelletier J, Abramson SB (2001) Osteoarthritis, an inflammatory disease: Potential implication for the selection of new therapeutic targets. Arthritis Rheum 44:1237–47.PubMedCrossRefGoogle Scholar
  93. 93.
    Pettipher ER, Higgs GA, Henderson B (1986) Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. Proc Natl Acad Sci U S A 83:8749–53.PubMedCrossRefGoogle Scholar
  94. 94.
    Pickvance EA, Oegema TR, Jr., Thompson RC, Jr. (1993) Immunolocalization of selected cytokines and proteases in canine articular cartilage after transarticular loading. J Orthop Res 11:313–23.PubMedCrossRefGoogle Scholar
  95. 95.
    Pratta MA, Yao W, Decicco C, Tortorella MD, Liu RQ, Copeland RA, Magolda R, Newton RC, Trzaskos JM, Arner EC (2003) Aggrecan protects cartilage collagen from proteolytic cleavage. J Biol Chem 278:45539–45.PubMedCrossRefGoogle Scholar
  96. 96.
    Punzi L, Oliviero F, Plebani M (2005) New biochemical insights into the pathogenesis of osteoarthritis and the role of laboratory investigations in clinical assessment. Crit Rev Clin Lab Sci 42:279–309.PubMedCrossRefGoogle Scholar
  97. 97.
    Quinn TM, Allen RG, Schalet BJ, Perumbuli P, Hunziker EB (2001) Matrix and cell injury due to sub-impact loading of adult bovine articular cartilage explants: Effects of strain rate and peak stress. J Orthop Res 19:242–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Quinn TM, Grodzinsky AJ, Buschmann MD, Kim Y-J, Hunziker EB (1998) Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. Journal of Cell Science 111:573–583.PubMedGoogle Scholar
  99. 99.
    Quinn TM, Grodzinsky AJ, Hunziker EB, Sandy JD (1998) Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants. J Orthop Res 16:490–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Radin EL (1978) Effects of repetitive impulsive loading on the knee joint of rabbits. Clinical Orthopaedics 131:288.Google Scholar
  101. 101.
    Radin EL, Parker HG, Pugh JW, Steinberg RS, Paul IL, Rose RM (1973) Response of joints to impact loading. 3. Relationship between trabecular microfractures and cartilage degeneration. J Biomech 6:51–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Repo RU, Finlay JB (1977) Survival of articular cartilage after controlled impact. Journal of Bone and Joint Surgery 59A:1068–1076.Google Scholar
  103. 103.
    Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee injury and osteoarthritis outcome score (koos)–development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96.PubMedGoogle Scholar
  104. 104.
    Roos H, Adalberth T, Dahlberg L, Lohmander LS (1995) Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: The influence of time and age. Osteoarthritis Cartilage 3:261–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Ruiz-Romero C, Lopez-Armada MJ, Blanco FJ (2005) Proteomic characterization of human normal articular chondrocytes: A novel tool for the study of osteoarthritis and other rheumatic diseases. Proteomics 5:3048–59.PubMedCrossRefGoogle Scholar
  106. 106.
    Salter DM, Millward-Sadler SJ, Nuki G, Wright MO (2001) Integrin-interleukin-4 mechanotransduction pathways in human chondrocytes. Clin OrthopS49–60.Google Scholar
  107. 107.
    Seog J, Dean D, Plaas AHK, Wong-Palms S, Grodzinsky AJ, Ortiz C (2002) Direct measurement of glycosaminoglycan intermolecular interactions via high-resolution force spectroscopy. Macromolecules 35:5601–5615.CrossRefGoogle Scholar
  108. 108.
    Setton LA, Elliott DM, Mow VC (1999) Altered mechanics of cartilage with osteoarthritis: Human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis Cartilage 7:2–14.PubMedCrossRefGoogle Scholar
  109. 109.
    Silver FH, Bradica G, Tria A (2004) Do changes in the mechanical properties of articular cartilage promote catabolic destruction of cartilage and osteoarthritis? Matrix Biol 23:467–76.PubMedCrossRefGoogle Scholar
  110. 110.
    Smith RL, Carter DR, Schurman DJ (2004) Pressure and shear differentially alter human articular chondrocyte metabolism: A review. Clin Orthop S89–95.Google Scholar
  111. 111.
    Steinmeyer J, Knue S (1997) The proteoglycan metabolism of mature bovine articular cartilage explants superimposed to continuously applied cyclic mechanical loading. Biochemical and Biophysical Research Communications 240:216–221.PubMedCrossRefGoogle Scholar
  112. 112.
    Stevens A, Bhat V, Fitzgerald JB, Wishnok J, Grodzinksy AJ, Tannenbaum S (2006) Proteomics study of cartilage breakdown caused by mechanical injury and cytokines IL-1β and TNF-α. Boston: 10th World Congress on Osteoarthritis, 13SA:P201.Google Scholar
  113. 113.
    Sun Y, Luo Z, An K (2002) Mechanical properties of single type II collagen molecule. Transactions of the Orthopaedic Research Society 27:82.Google Scholar
  114. 114.
    Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. Journal of Chemical Physics 70:1214–1218.CrossRefGoogle Scholar
  115. 115.
    Tchetverikov I, Lohmander LS, Verzijl N, Huizinga TW, TeKoppele JM, Hanemaaijer R, DeGroot J (2005) MMP protein and activity levels in synovial fluid from patients with joint injury, inflammatory arthritis, and osteoarthritis. Ann Rheum Dis 64: 694–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Thibault M, Poole AR, Buschmann MD (2002) Cyclic compression of cartilage/bone explants in vitro leads to physical weakening, mechanical breakdown of collagen and release of matrix fragments. J Orthop Res 20:1265–73.PubMedCrossRefGoogle Scholar
  117. 117.
    Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, Rosenfeld SA, Copeland RA, Decicco CP, Wynn R, Rockwell A, Yang F, Duke JL, Solomon K, George H, Bruckner R, Nagase H, Itoh Y, Ellis DM, Ross H, Wiswall BH, Murphy K, Hillman MC, Jr., Hollis GF, Newton RC, Magolda RL, Trzaskos JM, Arner EC (1999) Purification and cloning of aggrecanase-1: A member of the adamts family of proteins. Science 284:1664–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Tortorella MD, Malfait AM, Deccico C, Arner E (2001) The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation. Osteoarthritis Cartilage 9:539–52.PubMedCrossRefGoogle Scholar
  119. 119.
    Torzilli PA, Grigiene R, Borrelli J, Jr., Helfet DL (1999) Effect of impact load on articular cartilage: Cell metabolism and viability, and matrix water content. J Biomech Eng 121:433–41.PubMedGoogle Scholar
  120. 120.
    Treppo S, Koepp H, Quan EC, Cole AA, Kuettner KE, Grodzinsky AJ (2000) Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J Orthop Res 18:739–48.PubMedCrossRefGoogle Scholar
  121. 121.
    Tyler JA (1985) Articular cartilage cultured with catabolin (pig interleukin 1) synthesizes a decreased number of normal proteoglycan molecules. Biochem J 227:869–78.PubMedGoogle Scholar
  122. 122.
    von Porat A, Roos EM, Roos H (2004) High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: A study of radiographic and patient relevant outcomes. Ann Rheum Dis 63:269–73.CrossRefGoogle Scholar
  123. 123.
    Wheeler CA, Fitzgerald JB, Grodzinsky AJ (2005) Cartilage mechanobiology: The response of chondrocyte to mechanical force. Current Opinion in Orthopaedics 16:346–353.CrossRefGoogle Scholar
  124. 124.
    Yagi R, McBurney D, Laverty D, Weiner S, Horton WE, Jr. (2005) Intrajoint comparisons of gene expression patterns in human osteoarthritis suggest a change in chondrocyte phenotype. J Orthop Res 23:1128–1138.PubMedCrossRefGoogle Scholar
  125. 125.
    Zemmyo M, Meharra EJ, Kuhn K, Creighton-Achermann L, Lotz M (2003) Accelerated, aging-dependent development of osteoarthritis in alpha1 integrin-deficient mice. Arthritis Rheum 48:2873–80.PubMedCrossRefGoogle Scholar
  126. 126.
    Jubb RW, Fell HB (1980) The effect of synovial tissue on the synthesis of proteoglycan by the articular cartilage of young pigs. Arthritis Rheum 23: 545–555.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Diana H. Chai
  • Anna L. Stevens
  • Alan J. Grodzinsky

There are no affiliations available

Personalised recommendations