Ceramics, Refractories, and Glasses


This chapter presents the raw materials, the industrial preparation, and properties of ceramics, refractories and glasses. Particular attention is given to the most common ceramic materials found in industry and their raw materials namely: silica and silicates, bauxite and alumina, magnesite and magnesia, limestone and calcia, zircon and zirconia, carbon-based and silicon carbide along with the description of the most common advanced ceramics. Several tables containing comprehensive lists of the properties of raw materials for more than 100 advanced ceramics are also included.


Silicon Nitride Hydraulic Fracture Boron Carbide Rock Salt Hydrogen Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. Alper, A.M. (ed.) (1970–1971) High Temperature Oxides, 4 volumes. Academic, New York.Google Scholar
  2. Aronsson, B.; Lundstrom, T.; Rundquist, S. (1965) Borides, Silicides, and Phosphides. Methuen, London.Google Scholar
  3. Billups, W.E.; Ciufolini, M.A. (1993) Buckminsterfullerenes. VCH, Weinheim.Google Scholar
  4. Blesa, M.A.; Morando, P.J.; Regazzoni, A.E. (1994) Chemical Dissolution of Metal Oxides. CRC Press, Boca Raton, FL.Google Scholar
  5. Bradshaw, W.G.; Matthews, C.O. (1958) Properties of Refractory Materials: Collected Data and References. Lockheed Aircraft, Sunnyvale, CA, U.S. Government Report AD 205 452.Google Scholar
  6. Brixner, L.H. (1967) High Temperature Materials and Technology. Wiley, New York.Google Scholar
  7. Freer, R. (1989) The Physics and Chemistry of Carbides, Nitrides and Borides. Kluwer, Boston.Google Scholar
  8. Goodenough, J.B.; Longo, J.M. (1970) Crystallographic and Magnetic Properties of Perovskite and Perovskite related Compounds. Springer, Berlin Heidelberg New York.Google Scholar
  9. Kosolapova, T.A. (1971) Carbides, Properties, Productions, and Applications. Plenum, New York.Google Scholar
  10. Matkovich, V.I. (ed.) (1977) Boron and Refractory Borides. Springer, Berlin Heidelberg New York.Google Scholar
  11. Matkovich, V.I.; Samsonov, G.V., Hagenmuller, P.; Lundstrom, T. (1977) Boron and Refractory Borides. Springer, Berlin Heidelberg New York.Google Scholar
  12. Pierson, H.O. (1996) Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications. Noyes, Westwood, NJ.Google Scholar
  13. Samsonov, G.V. (1974) The Oxides Handbook. Plenum, New York.Google Scholar
  14. Singer, F.; Singer, S.S. (1963) Industrial Ceramics. Chemical Publishing Company, New York.Google Scholar
  15. Storms, E.K. (1967) The Refractory Carbides. Academic, New York.Google Scholar
  16. Toth, L.E. (1971) Transition Metals Carbides and Nitrides. Academic, New York.Google Scholar
  17. Toropov, N.A. (ed.) Phase Diagrams of Silicates Systems Handbook. Document NTIS AD 787517.Google Scholar
  18. Andrew, W. (1992) Handbook of Industrial Refractories: Technology, Principles, Types and Properties. Noyes, Westwood, NJ.Google Scholar
  19. Banerjee, S. (1998) Monolithic Refractories: A Comprehensive Handbook. World Scientific, Singapore.Google Scholar
  20. Campbell, I.E.; Sherwood, E.M. (ed.) (1967) High-temperature Materials and Technology. Wiley, New York.Google Scholar
  21. Carniglia, S.L.; Barna, G.L. (1992) Handbook of Industrial Refractories Technology: Principles, Types, Properties, and Applications. Noyes, Park Ridge, NJ.Google Scholar
  22. Chesters, J.H. (1974) Refractories for Iron and Steelmaking. Metals Society, London.Google Scholar
  23. Chesters, J.H. (1973) Refractories: Production and Properties. Iron and Steel Institute (ISI), London.Google Scholar
  24. Collective (1984) Technology of Monolithic Refractories. Plibrico Japan Company, Tokyo.Google Scholar
  25. Jourdain, A. (1966) La technologie des produits céramiques réfractaires. Gauthier-Villars, Paris.Google Scholar
  26. Kumashiro, Y. (2000) Electric Refractory Materials. Marcel Dekker, New York.Google Scholar
  27. Letort, Y.; Halm, L. (1953) Produits réfractaires et isolants: nature, fabrication, et utilisation. Centre d’études supérieures de la sidérurgie (CESS), Metz.Google Scholar
  28. Norton, F.H. (1968) Refractories, 4th ed. McGraw-Hill, New York.Google Scholar
  29. Oates, J.A.H. (1998) Lime and Limestone: Chemistry and Technology, Production and Uses. Wiley-VCH, Weinheim.Google Scholar
  30. Pincus, A.G. (1980) Refractories in the Glass Industry. Books for Industry, Glass Industry Magazine, New York.Google Scholar
  31. Schacht, C. (2004) Refractories Handbook. CRC Press, Boca Raton, FL.Google Scholar
  32. Schwarzkopf, P.; Kieffer, R. (eds.) (1953) Refractory Hard Metals: Borides, Carbides, Nitrides, and Silicides. Macmillan, New York.Google Scholar
  33. Storms, E.K. (1967) The Refractory Carbides. Academic, New York.Google Scholar
  34. Takamiya,Y.; Endo,Y.; Hosokawa, S. (1998) Refractories Handbook. American Ceramic Society (ACerS) Westerville, OH.Google Scholar
  35. Bach, H; Neuroth, N. (1998) The Properties of Optical Glass. Springer, Berlin Heidelberg New York.Google Scholar
  36. Eitel, W. (ed.) (1964–1973) Silicate Science, 6 volumes. Academic, New York.Google Scholar
  37. Feltz, A. (1993) Amorphous Inorganic Materials and Glasses. VCH, Weinheim.Google Scholar
  38. Jones, G.O. (1956) Glass. Wiley, New York.Google Scholar
  39. Morey, G.W. (1954) The Properties of Glasses, 2nd. ed. Reinhold-Van Nostrand, New York.Google Scholar
  40. Shand, E.B. (1958) Glass Engineering Handbook. McGraw-Hill, New York.Google Scholar
  41. Stanworth, J.E. (1950) The Physical Properties of Glasses. Clarendon, Oxford.Google Scholar
  42. Zarzycky, J. (1981) Les verres et l’état vitreux. Masson, Paris.Google Scholar
  43. API Recommended Practice RP-56 (1998) Recommended Practices for Evaluating Sand used in Hydraulic Fracturing Operations. American Institute of Petroleum Engineers, Washington, D.C.Google Scholar
  44. API Recommended Practice RP-60 (1995) Recommended Practices for Testing High-Strength Proppants Used in Hydraulic Fracturing Operations. American Institute of Petroleum Engineers, Washington, D.C.Google Scholar
  45. Economides, M.J.; Nolte, K.G. (2000) Reservoir Stimulation, 3rd ed. Wiley, New York.Google Scholar
  46. Ely, J.W. (1994) Stimulation Engineering Handbook. Pennwell.Google Scholar
  47. Gidley, Holtdicth, Nierode, and Veatch – Recent Advances in Hydraulic Fracturing. Society of Petroleum Engineers (SPE) Monograph Vol. 12.Google Scholar
  48. Gidley, J.L. (1990) Recent Advances in Hydraulic Fracturing (No. 30412). Society of Petroleum Engineers.Google Scholar
  49. Mader, D. (1989) Hydraulic Proppant Fracturing and Gravel Packing. In: Developments in Petroleum Science, Vol. 26. Elsevier, Amsterdam.Google Scholar
  50. McDaniel, R.R. – The effect of various proppants and proppants mixtures on fracture permeability. – Society of Petroleum Engineers of AIME Paper No. SPE 7573, Houston, TX.Google Scholar
  51. (1978)Smith, S.A. (1989) Manual of Hydraulic Fracturing for Well Stimulation and Geologic Studies. National Groundwater Association.Google Scholar
  52. Valko, P.; Economides, M.J. (1995) Hydraulic Fracture Mechanics. Wiley, London.Google Scholar
  53. Yew, C.H. (1997) Mechanics of Hydraulic Fracturing. Gulf Professional Publishing.Google Scholar

Copyright information

© Springer London 2008

Personalised recommendations