Skip to main content

Evolutionary Computation for Musical Tasks

  • Chapter
Evolutionary Computer Music

Abstract

If the preceding chapter was an introduction to evolutionary computation (EC) for musicians, this chapter is intended as an introduction to music as a problem domain for EC researchers. Since we cannot hope to provide even a bare-bones treatise on music appreciation, much less music theory, we assume that the reader is at least somewhat familiar with music, if not as a producer, at least as a consumer. We will start by trying to define some musical terms to work with, including ‘music’ itself, which will lead us to a brief excursion into human-computer interaction as a metaphor for musical performance. We will then conduct an informal task analysis of music to define the tasks musicians perform and survey how EC has been applied to facilitate (or obfuscate, in some cases) the performance of those tasks. We will then summarize the various approaches that have been taken in representation, fitness and genetic operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames, C. (1992). Quantifying Musical Merit. Interface 21: 53–93.

    Google Scholar 

  • Ariza, C. (2002). Prokaryotic groove: Rhythmic cycles as real-value encoded genetic algorithms. In Proceedings of the 2002 International Computer Music Conference. ICMA, San Francisco.

    Google Scholar 

  • Biles, J.A. (1994). GenJam: A genetic algorithm for generating jazz solos. In Proceedings of the 1994 International Computer Music Conference. ICMA, San Francisco.

    Google Scholar 

  • Biles, J.A. and Eign, W. (1995). GenJam Populi: Training an IGA via audience-mediated performance. In Proceedings of the 1995 International Computer Music Conference. ICMA, San Francisco.

    Google Scholar 

  • Biles, J.A., Anderson, P.G. and Loggi, L.W. (1996). Neural network fitness functions for a musical IGA. In Proceedings of the International ICSC Symposium on Intelligent Industrial Automation (IIA'96) and Soft Computing (SOCO'96). ICSC-NAISO Academic Press, Canada/The Netherlands, pp. B39–B44.

    Google Scholar 

  • Biles, J.A. (2003). GenJam in perspective: A tentative taxonomy for GA music and art systems. Leonardo 36(1): 43–45.

    Article  Google Scholar 

  • Burton, A.R. (1998) A Hybrid Neuro-Genetic Pattern Evolution System Applied to Musical Composition. PhD Thesis, University of Surrey, School of Electronic Engineering. Available online at http://www.tony-b.freeuk.com/phd.html.

    Google Scholar 

  • Burton, A.R. and Vladimirova, T. (1997). Genetic algorithm utilizing neural network evaluation for musical composition. In Proceedings of the 1997 International Conference on Artificial Neural Networks and Genetic Algorithms. Springer-Verlag, Berlin.

    Google Scholar 

  • Burton, A.R. and Vladimirova, T. (1999). Generation of musical sequences with genetic techniques. Computer Music Journal 23(4): 59–73.

    Article  Google Scholar 

  • Dawkins, R. (1986). The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. WW Norton, New York.

    Google Scholar 

  • de la Puente, A.O., Alfonso, R.S. and Moreno, M.A. (2002). Automatic composition of music by means of grammatical evolution. In Proceedings of the 2002 conference on APL. ACM Press, New York.

    Google Scholar 

  • Federman, F. (2003). The NEXTPITCH learning classifier system: Representation, information theory and performance. Leonardo 36(1): 47–50.

    Article  Google Scholar 

  • Fox, C. (2006). Genetic hierarchical music structures. In Proceedings of the 19th International FLAIRS Conference. AAAI Press, Menlo Park, CA.

    Google Scholar 

  • Gabrielsson, A. (1999). Music performance. In D. Deutsch (Ed.) Psychology of Music, 2nd ed. Academic Press, San Diego, pp. 501–602.

    Google Scholar 

  • Gardner, M. (1978). White and brown music, fractal curves and one-over-f fluctuations. Scientific American 238(4): 16–27.

    Article  Google Scholar 

  • Gartland-Jones, A. (2003). MusicBlox: A real-time algorithmic composition system incorporating a distributed interactive genetic algorithm. In Applications of Evolutionary Computing: EvoWorkshops 2003. LNCS 2611, Springer, Berlin, pp. 490–501.

    Google Scholar 

  • Gartland-Jones, A. and Copley, P. (2003). The suitability of genetic algorithms for music composition. Contemporary Music Review 22(3): 43–55.

    Article  Google Scholar 

  • Gibson, P.M. and Byrne, J.A. (1991). NEUROGEN: Musical composition using genetic algorithms and cooperating neural networks. In Proceedings of the IEE Second International Conference on Artificial Neural Networks. IEE, London, pp. 309–313.

    Google Scholar 

  • Goldberg, D.E. (2002). The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic, Boston.

    MATH  Google Scholar 

  • Grachten, M., Arcos, J.L. and Lopez de Mantaras, R. (2004). Evolutionary optimization of music performance annotation. In U.K. Wiil (Ed.), Computer Music Modeling and Retrieval: Second International Symposium, CMMR 2004. Lecture Notes in Computer Science 3310. Springer, Berlin, pp. 347–358.

    Google Scholar 

  • Graham-Rowe, D. (2001). Computer DJ uses biofeedback to pick tracks. New Scientist. Available online at http://www.newscientist.com/article.ns?id=dn1563.

    Google Scholar 

  • Hartson, H.R. and Hix, D. (1993). Developing User Interfaces. John Wiley, New York.

    MATH  Google Scholar 

  • Horner, A. and Goldberg, D.E. (1991). Genetic algorithms and computer-assisted music composition. In R. Belew and L. Booker (Eds.), Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan Kauffman, San Francisco.

    Google Scholar 

  • Horner, A. and Ayres, L. (1995). Harmonisation of musical progression with genetic algorithms. In Proceedings of the 1995 International Computer Music Conference. ICMA, San Francisco.

    Google Scholar 

  • Horowitz, D. (1994). Generating rhythms with genetic algorithms. In Proceedings of the 1994 International Computer Music Conference. ICMA, San Francisco.

    Google Scholar 

  • Hiller, L.A. and Isaacson, L.M. (1959). Experimental Music: Composition with and Electronic Computer. McGraw-Hill, New York.

    Google Scholar 

  • Jacob, B. (1995). Composing with genetic algorithms. In Proceedings of the 1995 International Computer Music Conference. ICMA, San Francisco.

    Google Scholar 

  • Jacob, B. (1996). Algorithmic composition as a model of creativity. Organised Sound 1(3): 157–165.

    Article  Google Scholar 

  • Johanson, B. and Poli, R. (1998). Gp-music: An interactive genetic programming system for music generation with automated fitness raters. In Proceedings of the 3rd International Conference on Genetic Programming, GP'98. MIT Press, Cambridge, MA.

    Google Scholar 

  • Madsen, S.T. and Widmer, G. (2005). Exploring similarities in music performances with an evolutionary algorithm. In Proceedings of the 18th International FLAIRS Conference. AAAI Press, Menlo Park, CA.

    Google Scholar 

  • Madsen, S.T. and Widmer, G. (2006). Exploring pianist performance styles with evolutionary string matching. International Journal of Artificial Intelligence Tools 15(4): 495–514.

    Article  Google Scholar 

  • Manaris, B., Vaughan, D., Wagner, C., Romero, J. and Davis, R.B. (2003). Evolutionary music and the Zipf-Mandelbrot law: Developing fitness functions for pleasant music. In Lecture Notes in Computer Science, 2611, Springer-Verlag, Heidelberg, pp. 522–534.

    Google Scholar 

  • Marques, M., Oliveira, V., Vieira, S. and Rosa, A.C. (2000). Music composition using genetic evolutionary algorithms. In Proceedings of the IEEE Conference on Evolutionary Computation 2000. IEEE Press, New York, NY.

    Google Scholar 

  • McIntyre, R.A. (1994). Bach in a box: The evolution of four-part baroque harmony using the genetic algorithm. In Proceedings of the IEEE Conference on Evolutionary Computation, 14(3). IEEE Press, New York, NY, pp. 852–857.

    Google Scholar 

  • Milkie, E. and Chestnutt, J. (2001). Fugue Generation with Genetic Algorithms. Available online at http://www.cs.cornell.edu/boom/2001sp/milkie/.

    Google Scholar 

  • Mrozek, E.M. and Wakefield, G.H. (1996). Perceptual matching of low order models to room transfer functions. In Proceedings of the 1996 International Computer Music Conference, ICMA, San Francisco.

    Google Scholar 

  • Nelson, G.L. (1993). Sonomorphs: An application of genetic algorithms to the growth and development of musical organisms. In Proceedings of the Fourth Biennial Art and Technology Symposium. Connecticut College, pp. 155–169.

    Google Scholar 

  • Norman, D.A. (1988). The Design of Everyday Things. Doubleday, New York.

    Google Scholar 

  • Papadopoulos, G. and Wiggins, G. (1998). A genetic algorithm for the generation of jazz melodies. In Proceedings of STeP 98, Jyväskylä, Finland. Available online at http://www.soi.city.ac.uk/~geraint/papers/STeP98.pdf.

    Google Scholar 

  • Phon-Amnuaisuk, S. and Wiggins, G. (1999). The four-part harmonisation problem: A comparison between genetic algorithms and a rule-based system. In Proceedings of AISB 99. Edinburgh, Scotland, 1999.

    Google Scholar 

  • Pierce, J. (1999). Introduction to pitch perception. In P.R. Cook (Ed.), Music, Cognition and Computerized Sound: An Introduction to Psychoacoustics. MIT Press, Cambridge, MA.

    Google Scholar 

  • PMCP. (2005). Penfield Music Commission Project. Available online at http://www.penfield. edu/phs/default.asp?section=show_page&id=158.

    Google Scholar 

  • Polito, J., Daida, J. and Bersano-Begey, T.F. (1997). Musica ex machina: Composing 16th-century counterpoint with genetic programming and symbiosis. In P.J. Angeline, R.G. Reynolds, J.R. McDonnell, R. Eberhart (Eds.), Evolutionary Programming VI: Proceedings of the Sixth Annual Conference on Evolutionary Programming, 1213. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Prerau, M. (2001). On the possibilities of an analytic synthesis system. In Proceedings of the European Conference on Artificial Life 2001 Workshop: Artificial Life Models for Musical Applications. Prague, Czech Republic.

    Google Scholar 

  • Putnam, J.B. (1996). A grammar-based genetic programming technique applied to music generation. In L.J. Fogel, P.J. Angeline and T. Baeck (Eds.), Evolutionary Programming V: Proceedings of the Fifth Annual Conference on Evolutionary Programming. MIT Press, Cambridge, MA, pp. 277–286.

    Google Scholar 

  • Ralley, D. (1995). Genetic algorithm as a tool for melodic development. In Proceedings of the 1995 International Computer Music Conference. ICMA, San Francisco.

    Google Scholar 

  • Roads, C. (2001). Microsound. MIT Press, Cambridge, MA.

    Google Scholar 

  • Sharman, K. and Esparcia-Alcazar, A. (2003). Evolutionary methods for designing digital filters. Contemporary Music Review 22(3): 5–19.

    Article  Google Scholar 

  • Sims, K. (1991). Artificial evolution for computer graphics. In Proceedings of SigGraph ′91. pp. 319–328.

    Google Scholar 

  • Spector, L. and Alpern, A. (1994). Criticism, culture, and the automatic generation of artworks. In Proceedings of the Twelfth National Conference on Artificial Intelligence, AAAI-94. AAAI Press/The MIT Press, Menlo Park, CA, Cambridge, MA. Available online at http://hampshire.edu/%7ElasCCS/genbebop.html.

    Google Scholar 

  • Thywissen, K. (1999). GeNotator: An environment for exploring the application of evolutionary techniques in computer-assisted composition. Organised Sound 4: 127–133.

    Article  Google Scholar 

  • Todd, P. and Werner, G. (1999). Frankensteinian methods for evolutionary music composition. In N. Griffith and P. Todd (Eds.), Musical Networks: Parallel Distributed Perception and Performance. MIT Press, Cambridge, MA.

    Google Scholar 

  • Tokui, N. and Iba, H. (2000). Music composition with interactive evolutionary computation. In GA2000, Proceedings of the Third International Conference on Generative Art, Milan, Italy.

    Google Scholar 

  • Towsey, M., Brown, A., Wright, S. and Diederich, J. (2001). Towards melodic extension using genetic algorithms. Educational Technology & Society 4(2): 54–65.

    Google Scholar 

  • Unemi, T. (2002). SBEAT3: A tool for multi-part music composition by simulated breeding. In Proceedings of the Eighth International Conference on Artificial Life (A-Life VIII). MIT Press, Cambridge, MA.

    Google Scholar 

  • Voss, R.F. and Clarke, J. (1978). 1/f noise in music: Music from 1/f noise. Journal of the Acoustic Society of America 63(1): 258–263.

    Article  Google Scholar 

  • Widmer, G. and Goebl, W. (2004). Computational models of expressive music performance: The state of the art. Journal of New Music Research 33(3): 203–216.

    Article  Google Scholar 

  • Woolf, S. and Yee-King, M. (2003). Virtual and physical interfaces for collaborative evolution of sound. Contemporary Music Review 22(3): 31–41.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

BILES, J.A. (2007). Evolutionary Computation for Musical Tasks. In: Miranda, E.R., Biles, J.A. (eds) Evolutionary Computer Music. Springer, London. https://doi.org/10.1007/978-1-84628-600-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-600-1_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-599-8

  • Online ISBN: 978-1-84628-600-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics