Skip to main content

Computational Evolutionary Musicology

  • Chapter
Evolutionary Computer Music
  • 1895 Accesses

Abstract

The beginning of Chapter 2 offered a sensible definition of music as temporally organized sound. In the broader sense of this definition, one could arguably state that music is not uniquely human. A number of other animals also seem to have music of some sort. Complex vocalizations can be found in many birds (Marler and Slabbekoorn 2004), as well as in mammals such as whales (Payne and McVay 1971) and bats (Behr and von Helversen 2004). In a chapter suggestively entitled ‘Zoomusicologie’ in the book Musique, Mythe, Nature ou Les Dauphins d’Arion, Mâche (1991) presents an interesting discussion on the formal sophistication of various birdcalls. Recently Holy and Guo (2005) demonstrated that the ultrasonic vocalizations that male mice produce when they encounter female mice or their pheromones have the characteristics of song. What is intriguing is that primates who are close related to humans are not as ‘musical’ as those mammals that are far more distantly related to us. This intriguing fact suggests that music might have evolved independently among various types of animals, at various degrees of sophistication. In this context, it would be perfectly plausible to suggest the notion that robots might also be able to evolve music.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Behr, O. and von Helversen, O. (2004). Bat serenades—Complex courtship songs of the sac-winged bat “Saccopteryx bilineatta”. Behavioral Ecology and Sociobiology, 56: 106–115.

    Article  Google Scholar 

  • Bidlack, R. (1992). Chaotic systems as simple (but complex) compositional algorithms. Computer Music Journal, 16(3): 33–47.

    Article  Google Scholar 

  • Boersma, P. (1993). Articulatory Synthesizers for the Simulations of Consonants. Proceedings of Eurospeech'93, Berlin, Germany, pp. 1907–1910.

    Google Scholar 

  • Brodie, R. (1996). Virus of the Mind: The New Science of the Meme. Integral Press, Walnut Creek, CA.

    Google Scholar 

  • Brown, S. (2000). The “Musilanguage” model of music evolution. In N.B. Merker and S. Brown (Eds.), The Origins of Music. The MIT Press, Cambridge, USA.

    Google Scholar 

  • Burton, A.R. and Vladimirova, T. (1997). A Genetic Algorithm Utilising Neural Network Fitness Evaluation for Musical Composition, In G.D. Smith, N.C. Steele and R.F. Albrecht (Eds.), Proceedings of the 1997 International Conference on Artificial Neural Networks and Genetic Algorithms, Springer-Verlag, Vienna, pp. 220–224.

    Google Scholar 

  • Cangelosi, A. and Parisi, D. (Eds.) (2001). Simulating the Evolution of Language. Springer Verlag, London, UK.

    Google Scholar 

  • Casti, J.L. (1997). Would-be Worlds: How Simulation of Changing the Frontiers of Science. John Wiley & Sons, NY.

    Google Scholar 

  • Christiansen, M.H. and Kirby, S. (Eds.) (2003). Language Evolution: The States of the Art. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Cope, D. (1996). Experiments in Musical Intelligence. Madison, A-R Editions Inc., WI.

    Google Scholar 

  • Darwin, C. (1992) (1st published in 1871). The Descent of Man and Selection in Relation to Sex. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Freeman, W. (1995). Societies of Brains: A Study in the Neuroscience of Love and Hate. Lawrence Erlbaum Associates, Mahwah, NJ.

    Google Scholar 

  • Gallese, V. and Goldman, A. (1998). Mirror-neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 12: 493–501.

    Article  Google Scholar 

  • Glaser, R. (2001). Biophysics. Springer, Heidelberg.

    Google Scholar 

  • Holy, T.E. and Guo, Z. (2005). Ultrasonic Songs of Male Mice. PLoS Biology, 3(12): e386.

    Article  Google Scholar 

  • James, D.L. and Miikkulainen, R. (1995). SARDNET: a self-organizing feature map for sequences. In G. Tesauro, D. Touretzky and T. Leen (Eds), Advances in Neural Information Processing Systems 7. MIT Press, Cambridge, MA.

    Google Scholar 

  • Kohonen, T. (1997). Self-Organizing Maps. Springer Series in Information Sciences. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Levy, S. (1993). Artificial Life: A Report from the Frontier where Computers meets Biology. Vintage, London, UK.

    Google Scholar 

  • Locke, J.L. (1993). The Child's Path to Spoken Language. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Mâche, F.-B. (1991). Musique, Mythe, Nature ou les Dauphins d'Arion. Méridiens Klincksieck, Paris.

    Google Scholar 

  • Marler, P. and Slabbekoorn, H. (Eds.) (2004). Nature's music: The science of birdsong. Elsevier, Boston, MA.

    Google Scholar 

  • Martins, J. and Miranda, E. R. (2006). A Connectionist architecture for the evolution of rhythms. Proceedings of EvoWorkshops 2006, LNCS 3970. Springer, New York, pp. 696–706.

    Google Scholar 

  • Milicevic, M. (1996). The Impact of Fractals, Chaos and Complexity on Computer Music Composition. Proceedings of International Computer Music Conference (ICMC 96). Hong Kong, International Computer Music Association, San Francisco, pp. 473–476.

    Google Scholar 

  • Miller, G. (2000). Evolution of human music through sexual selection. In N. Wallin, B. Merker and S. Brown (Eds.), The Origins of Music. The MIT Press, Cambridge, MA, pp. 329–360.

    Google Scholar 

  • Miranda, E. R. and Drouet, E. (2006). Evolution of musical lexicons by babbling robots. Proceedings of Towards Autonomous and Robotic Systems 2006, University of Surrey, Gilford, UK. On-line proceedings: http://taros.mech.surrey.ac.uk/schedule.php (Accessed 17 Nov 2006).

    Google Scholar 

  • Miranda, E.R. (2002b). Mimetic model of intonation. In C. Anagnostopoulou, M. Ferrand and A. Smaill (Eds.), Music and Artificial Intelligence—Second International Conference ICMAI 2002. Lecture Notes on Artificial Intelligence 2445, Springer-Verlag, Berlin, Germany, pp. 107–118.

    Google Scholar 

  • Miranda, E.R. (2002a). Computer Sound Design: Synthesis Techniques and Programming. Focal Press, Oxford, UK.

    Google Scholar 

  • Miranda, E.R. (2001). Synthesising prosody with variable resolution. AES Convention Paper 5332. Audio Engineering Society, Inc., NY, USA.

    Google Scholar 

  • Mithen, S. (2005). The Singing Neanderthal: The Origins of Music, Language, Mind and Body. Weidenfeld & Nicolson, London.

    Google Scholar 

  • Mozer, M. (1994). Neural network music composition by prediction: Exploring the benefits of psychophysical constraints and multiscale processing. Connection Science, 6: 247–280.

    Article  Google Scholar 

  • Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P. and Winkler, I. (2001). Primitive intelligence in the auditory cortex, Trends in Neurosciences, 24: 283–288.

    Article  Google Scholar 

  • Nazzi, T., Floccia, C. and Bertoncini, J., (1998). Discrimination of pitch contours by neonates. Infant Behaviour, 12: 543–554.

    Google Scholar 

  • Papadopoulos, G. and Wiggins, G. (1998). A Genetic Algorithm for the Generation of Jazz Melodies. Proceedings of 8th Finnish Conference on Artificial Intelligence, Jyväskylä, Finland.

    Google Scholar 

  • Payne, R.S. and McVay, S. (1971). Songs of humpback whales, Science, 173: 585–597.

    Article  Google Scholar 

  • Parsons, L.M. (2003). Exploring the Functional Neuroanatomy of Music Performance, Perception and Comprehension, In I. Peretz and R. Zatorre (Eds.), The Cognitive Neuroscience of Music. Oxford University Press, Oxford, UK, pp. 247–268.

    Google Scholar 

  • Peretz, I. and Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6: 688–691.

    Article  Google Scholar 

  • Peretz, I., Kolinsky, R., Tramo, M., Labrecque, L., Hublet, C. and Demeurisse, G. (1994). Functional dissociations following bilateral lesions of auditory cortex. Brain, 117: 1283–1301.

    Article  Google Scholar 

  • Premack, D. and Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behaviour and Brain Sciences, 1(4): 515–526.

    Article  Google Scholar 

  • Rousseau, J.-J. (1990) (1st published in 1765). Essay sur l'origine des langues. Gallimard, Paris.

    Google Scholar 

  • Rizzolatti, G. and Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27: 169–192.

    Article  Google Scholar 

  • Salu, Y. (2001). Understanding Brain and Mind: A Connectionist Perspective. World Scientific, Singapore.

    MATH  Google Scholar 

  • Steedman, M. (1984). A generative grammar for jazz chord sequences. Music Perception, 2: 52–77.

    Google Scholar 

  • Steels, L. (1997). The Origins of Syntax in Visually Grounded Robotic Agents. Proceedings of International Joint Conference on Artificial Intelligence (IJCAI'97). Nagoya, Aichi, Japan.

    Google Scholar 

  • Thomas, D.A. (1995). Music and the Origins of Language. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Todd, P.M. and Loy, D.G. (Eds.) (1991). Music and Connectionism. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Todd, P.M. and Werner, G.M. (1999). Frankensteinian Methods for Evolutionary Music Composition. In N. Griffith and P.M. Todd (Eds.), Musical Networks: Parallel Distributed Perception and Performance. The MIT Press/Bradford Books, Cambridge, USA, pp. 313–339.

    Google Scholar 

  • Wallin, N.J., Merker, B. and Brown, S. (Eds.) (2000). The Origins of Music. The MIT Press, Cambridge, USA.

    Google Scholar 

  • Wray, A. (1998). Protolanguage as a holistic system for social interaction. Language and Communication, 18: 46–667.

    Article  Google Scholar 

  • Zinkovsky, A.V., Sholuha, V.A. and Ivanov, A.A. (1996). Mathematical Modelling and Computing Simulation of Biomechanical Systems. World Scientific, Singapore.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

MIRANDA, E.R., TODD, P.M. (2007). Computational Evolutionary Musicology. In: Miranda, E.R., Biles, J.A. (eds) Evolutionary Computer Music. Springer, London. https://doi.org/10.1007/978-1-84628-600-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-600-1_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-599-8

  • Online ISBN: 978-1-84628-600-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics