Skip to main content

Applications of Ionic Polymer-Metal Composites: Multiple-DOF Devices Using Soft Actuators and Sensors

  • Chapter

9.6. Conclusions

In this paper, we described several robotic applications developed using IPMC materials, which the authors have been developed as attractive soft actuators and sensors. We introduced following unique devices as applications of IPCM actuators: (1) haptic interface for virtual tactile displays, (2) distributed actuation devices, and (3) a soft micromanipulation device with three degrees of freedom. We also focused on aspects of sensor function of IPMC materials. The following applications are described: (1)a three-DOF tactile sensor and (2)a patterned sensor on an IPMC film.

Keywords

  • Ionic Polymer Metal Composite
  • Sensor Output
  • Haptic Interface
  • Selective Stimulation
  • Softness Sensation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-84628-372-7_9
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-84628-372-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.7 References

  1. Oguro K., Y Kawami, and H. Takenaka, “Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage,” J. of Micromachine Society, Vol. 5, pp. 27–30, 1992.

    Google Scholar 

  2. Shahinpoor M., Conceptual Design, Kinematics and Dynamics of Swimming Robotic Structures using Ionic Polymeric Gel Muscles, Smart Materials and Structures, Vol. 1, No.1, pp.91–94, 1992.

    CrossRef  Google Scholar 

  3. Guo S., T. Fukuda, K. Kosuge, F. Arai, K. Oguro, and M. Negoro, “Micro catheter system with active guide wire,” Proc. IEEE International Conference on Robotics and Automation, pp. 79–84, 1995.

    Google Scholar 

  4. Onishi Z., S. Sewa, K. Asaka, N. Fujiwara, and K. Oguro, Bending response of polymer electolete acutator, Proc. SPIE SS-EAPD, pp.121–128, 1999.

    Google Scholar 

  5. Tadokoro S., T. Murakami, S. Fuji, R. Kanno, M. Hattori, and T. Takamori, “An elliptic friction drive element using an ICPF (ionic conducting polymer gel film) actuator,” IEEE Control Systems, Vol. 17, No. 3, pp. 60–68, 1997.

    CrossRef  Google Scholar 

  6. Tadokoro S., S. Fuji, M. Fushimi, R. Kanno, T. Kimura, T. Takamori, and K. Oguro, “Development of a distributed actuation device consisting of soft gel actuator elements,” Proc. IEEE International Conference on Robotics and Automation, pp. 2155–2160, 1998.

    Google Scholar 

  7. Tadokoro S., S. Fuji, T. Takamori, and K. Oguro, Distributed actuation devices using soft gel actuators, Distributed Manipulation, Kluwer Academic Press, pp. 217–235, 1999.

    Google Scholar 

  8. Guo S., T. Fukuda, N. Kato, and K. Oguro, “Development of underwater microrobot using ICPF actuator,” Proc. IEEE International Conference on Robotics and Automation, pp. 1829–1835, 1998.

    Google Scholar 

  9. Tadokoro T., S. Yamagami, M. Ozawa, T. Kimura, T. Takamori, and K. Oguro, “Multi-DOF device for soft micromanipulation consisting of soft gel actuator elements,” Proc. IEEE International Conference on Robotics and Automation, pp. 2177–2182, 1999.

    Google Scholar 

  10. Tadokoro S., S. Yamagami, T. Kimura, T. Takamori, and K. Oguro, “Development of a multi-degree-of-freedom micro motion device consisting of soft gel actuators,” J. of Robotics and Mechatronics, 2000.

    Google Scholar 

  11. Guo S., S. Hata, K. Sugimoto, T. Fukuda, and K. Oguro, “Development of a new type of capsule micropump,” Proc. IEEE International Conference on Robotics and Automation, pp. 2171–2176, 1999.

    Google Scholar 

  12. Bar-Cohen Y., S.P. Leary, K. Oguro, S. Tadokoro, J.S. Harrison, J.G. Smith, and J. Su, “Challenges to the application of IPMC as actuators of planetary mechanisms,” Proc. SPIE 7th International Symposium on Smart Structures, Conference on Electro-Active Polymer Actuators and Devices, pp. 140–146, 2000.

    Google Scholar 

  13. Fukuhara M., S. Tadokoro, Y. Bar-Cohen, K. Oguro, and T. Takamori, “A CAE approach in application of Nafion-Pt composite (ICPF) actuators: Analysis for surface wipers of NASA MUSES-CN nanorovers,” Proc. SPIE 7th International Symposium on Smart Structures, Conference on Electro-Active Polymer Actuators and Devices, pp. 262–272, 2000.

    Google Scholar 

  14. Konyo M., S. Tadokoro, T. Takamori, and K. Oguro, “Artificial tactile feel display using soft gel actuators,” Proc. IEEE International Conference on Robotics and Automation, pp. 3416–3421, 2000.

    Google Scholar 

  15. Konyo M., S. Tadokoro, M. Hira, and T. Takamori, “Quantitative Evaluation of Artificial Tactile Feel Display Integrated with Visual Information”, Proc. IEEE International Conference on Intelligent Robotics and Systems, pp. 3060–3065, 2002.

    Google Scholar 

  16. Konyo M., K. Akazawa, S. Tadokoro, and T. Takamori, Wearable Haptic Interface Using ICPF Actuators for Tactile Feel Display in Response to Hand Movements, Journal of Robotics and Mechatronics, Vol. 15, No. 2, pp. 219–226, 2003.

    Google Scholar 

  17. Konyo M., A. Yoshida, S. Tadokoro, and N. Saiwaki, “A tactile synthesis method using multiple frequency vibration for representing virtual touch”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1121–1127, 2005.

    Google Scholar 

  18. Kanno R., A. Kurata, M. Hattori, S. Tadokoro, and T. Takamori, “Characteristics and modeling of ICPF actuator,” Proc. Japan-USA Symposium on Flexible Automation, pp. 692–698, 1994.

    Google Scholar 

  19. Kanno R., S. Tadokoro, T. Takamori, M. Hattori, and K. Oguro, “Linear approximate dynamic model of an ICPF (ionic conducting polymer gel film) actuator,” Proc. IEEE International Conference on Robotics and Automation, pp. 219–225, 1996.

    Google Scholar 

  20. Kanno R., S. Tadokoro, M. Hattori, T. Takamori, and K. Oguro, “Modeling of ICPF (ionic conducting polymer gel film) actuator, Part 1: Fundamental characteristics and black-box modeling,” Trans. of the Japan Society of Mechanical Engineers, Vol. C-62, No. 598, pp. 213–219, 1996 (in Japanese).

    Google Scholar 

  21. Kanno R., S. Tadokoro, M. Hattori, T. Takamori, and K. Oguro, “Modeling of ICPF (ionic conducting polymer gel film) actuator, Part 2: Electrical characteristics and linear approximate model,” Trans. of the Japan Society of Mechanical Engineers, Vol. C-62, No. 601, pp. 3529–3535, 1996 (in Japanese).

    Google Scholar 

  22. Kanno R., S. Tadokoro, T. Takamori, and K. Oguro, “Modeling of ICPF actuator, Part 3: Considerations of a stress generation function and an approximately linear actuator model,” Trans. of the Japan Society of Mechanical Engineers, Vol. C-63, No. 611, pp. 2345–2350, 1997 (in Japanese).

    Google Scholar 

  23. Firoozbakhsh K., M. Shahinpoor, and M. Shavandi, “Mathematical modeling of ionicinteractions and deformation in ionic polymer-metal composite artificial muscles,” Proc. SPIE Smart Structure and Material Conference, Proc. SPIE Vol. 3323, pp. 577–587, 1998.

    Google Scholar 

  24. Shahinpoor M., “Active polyelectrolyte gels as electrically controllable artificial muscles and intelligent network structures, Structronic Systems: Smart Structures, Devices and Systems, Part II: Systems and Control,” World Scientific, pp. 31–85, 1998.

    Google Scholar 

  25. Tadokoro S., S. Yamagami, T. Takamori, and K. Oguro, “Modeling of Nafion-Pt composite actuators (ICPF) by ionic motion,” Proc. SPIE 7th International Symposium on Smart Structures, Conference on Electro-Active Polymer Actuators and Devices, pp. 92–102, 2000.

    Google Scholar 

  26. Tadokoro S., S. Yamagami, T. Takamori, and K. Oguro, “An actuator model of ICPF for robotic applications on the basis of physicochemical hypotheses,” Proc. IEEE International Conference on Robotics and Automation, pp. 1340–1346, 2000.

    Google Scholar 

  27. Nemat-Nasser S. and J.Y. Li, “Electromechanical response of ionic polymer metal composites,” Proc. SPIE Smart Structures and Materials 2000, Conference on Electro-Active Polymer Actuators and Devices, Vol. 3987, pp. 82–91, 2000.

    Google Scholar 

  28. Konyo M., Y. Konishi, S. Tadokoro, and T. Kishima, Development of Velocity Sensor Using Ionic Polymer-Metal Composites, Proc. SPIE International Symposium on Smart Structures, Conference on Electro-Active Polymer Actuators and Devices, 2003.

    Google Scholar 

  29. Benali-Khoudja M., M. Hafez, J.M. Alexandre, and A. Kheddar, Tactile interfaces: a state-of-the-art survey, 35th International Symposium on Robotics, pp.23–26, 2004.

    Google Scholar 

  30. Shinoda H, N. Asamura, and N. Tomori, A tactile feeling display based on selective stimulation to skin receptors, Proc. IEEE ICRA, pp. 435–441, 1998.

    Google Scholar 

  31. Kajimoto H, M. Inami, N. Kawakami, and S. Tachi, Smart Touch: Augmentation of Skin Sensation with Electrocutaneous Display, Proc. of the 11th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp.40–46, 2003.

    Google Scholar 

  32. Vallbo, Å.B. and Johansson, R.S., Properties of cutaneous mechanoreceptors in the human hand related to touch sensation, Human Neurobiology, 3, pp.3–14, 1984.

    Google Scholar 

  33. Maeno T., Structure and Function of Finger Pad and Tactile Receptors, J. Robot Society of Japan, 18,6, pp.772–775, 2000 (In Japanese).

    Google Scholar 

  34. Talbot W.H., I. Darian-Smith, H.H. Kornhuber, and V.B. Mountcastle, The Sense of Flutter. Vibration: Comparison of the human Capability with Response Patterns of Mechanoreceptive Afferents from the Monkey Hand, J. Neurophysiology, 31, pp.301–335, 1968.

    Google Scholar 

  35. Freeman A.W., and K.O. Johnson, A Model Accounting for Effects of Vibratory Amplitude on Responses of Cutaneous Mechanoreceptors in Macaque Monkey, J. Physiol., 323, pp.43–64, 1982.

    Google Scholar 

  36. Carrozza M. C., P. Dario, A. Menciassi, and A. Fenu, “Manipulating biological and mechanical micro-objects using LIGA-microfabricated end-effectors,” Proc. IEEE International Conference on Robotics and Automation, pp. 1811–1816, 1998.

    Google Scholar 

  37. Ono T., and M. Esashi, “Evanescent-field-controlled nano-pattern transfer and micromanipulation,” Proc. IEEE International Workshop on Micro Electro Mechanical Systems, pp. 488–493, 1998.

    Google Scholar 

  38. Zhou Y., B.J. Nelson, and B. Vikramaditya, “Fusing force and vision feedback for micromanipulation,” Proc. IEEE International Conference on Robotics and Automation, pp. 1220–1225, 1998.

    Google Scholar 

  39. Sadeghipour K., R. Salomon, and S. Neogi, Development of a Novel Electrochemically Active Membrane and’ smart’ Material Based Vibration Sensor/Damper, Smart Materials and Structures, Vol.1, No.2, pp.172–179, 1992.

    CrossRef  Google Scholar 

  40. Shahinpoor M., Y. Bar-Cohen, J.O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMC) as biomimetic sensors, Actuators and Artificial Muscles — A Review,” Field Responsive Polymers, American Chemical Society, 1999.

    Google Scholar 

  41. Fujiwara N., K. Asaka, Y. Nishimura, K. Oguro, and E. Torikai, Preparation and gold-solid polymer electrolyte composites as electric stimuli-responsive materials, Chem. Materials, Vol. 12, pp.1750–1754, 2000.

    CrossRef  Google Scholar 

  42. Nakabo Y., T. Mukai, and K. Asaka, A Two-Dimensional Multi-DOF Robot Manipulator with a Patterned Artificial Muscle, Proc. Robotics Symposia, 2004 (In Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Konyo, M., Tadokoro, S., Asaka, K. (2007). Applications of Ionic Polymer-Metal Composites: Multiple-DOF Devices Using Soft Actuators and Sensors. In: Kim, K.J., Tadokoro, S. (eds) Electroactive Polymers for Robotic Applications. Springer, London. https://doi.org/10.1007/978-1-84628-372-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-372-7_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-371-0

  • Online ISBN: 978-1-84628-372-7

  • eBook Packages: EngineeringEngineering (R0)