Madden, J. D. W., Vandesteeg, N. A., Anquetil, P. A., Madden, P. G. A., Takshi, A., Pytel, R. Z., Lafontaine, S. R., Wieringa, P. A., and Hunter, I. W. Artificial muscle technology: Physical principles and naval prospects. Oceanic Engineering, IEEE Journal of 29(3), 706–728 (2004).
CrossRef
Google Scholar
Baughman, R.H. Conducting polymer artificial muscles. Synthetic Metals 78, 339–353 (1996).
CrossRef
Google Scholar
Baughman, R.H., Shacklette, R.L., and Elsenbaumer, R.L. Micro electromechanical actuators based on conducting polymers. In Lazarev, P.I. (ed.) Topics in Molecular. Organization and Engineering, Vol.7: Molecular Electronics. Kluwer, Dordrecht (1991).
Google Scholar
Otero, T.F. Artificial muscles, electrodissolution and redox processes in conducting polymers. In Nalwa, H.S. (ed.) Handbook of organic and Conductive Molecules and Polymers. John Wiley & Sons, Chichester (1997).
Google Scholar
Pei, Q. and Inganas, O. Electrochemical applications of the beam bending method; a novel way to study ion transport in electroactive polymers. Solid State Ionics 60, 161–166 (1993).
CrossRef
Google Scholar
Herod, T.E. and Schlenoff, J.B. Doping induced strain in polyaniline: Stretchoelectrochemistry. Chemistry of Materials 5, 951–955 (1993).
CrossRef
Google Scholar
Kaneto, K., Kaneko, M., and Takashima, W. Response of chemomechanical deformation in polyaniline film on variety of anions. Japanese Journal of Applied Physics 34, Part 2, L837–L840 (1995).
CrossRef
Google Scholar
Pei, Q. and Inganas, O. Electrochemical application of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. Journal of Physical Chemistry 96, 10507–10514 (1992).
CrossRef
Google Scholar
Baughman, R.H. Conducting polymer artificial muscles. Synthetic Metals 78, 339–353 (1996).
CrossRef
Google Scholar
Madden, J.D., Madden, P.G., Anquetil, P.A., and Hunter, I.W. Load and time dependence of displacement in a conducting polymer actuator. Materials Research Society Proceedings 698, 137–144 (2002).
Google Scholar
Mazzoldi, A., Della Santa, A., and De Rossi, D. Conducting polymer actuators: Properties and modeling. In Osada, Y. and De Rossi, D.E. (eds.) Polymer Sensors and Actuators. Springer Verlag, Heidelberg (1999).
Google Scholar
Madden, J.D., Madden, P.G., and Hunter, I.W. Conducting polymer actuators as engineering materials. In Yoseph Bar-Cohen (ed.) Proceeding of SPIE Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices. SPIE Press, Bellingham, WA (2002).
Google Scholar
Mazzoldi, A., Della Santa, A., and De Rossi, D. Conducting polymer actuators: Properties and modeling. In Osada, Y. and De Rossi, D.E. (eds.) Polymer Sensors and Actuators. Springer Verlag, Heidelberg (1999).
Google Scholar
Spinks, G., Liu, L., Wallace, G., and Zhou, D. Strain response from polypyrrole actuators under load. Advanced Functional Materials 12, 437–440 (2002).
CrossRef
Google Scholar
Smela, E. and Gadegaard, N. Volume change in polypyrrole studied by atomic force microscopy. Journal of Physical Chemistry B 105, 9395–9405 (2001).
CrossRef
Google Scholar
Hara, S., Zama, T., Takashima, W., and Kaneto, K. Gel-Like polypyrrole based artificial muscles with extremely large strain. Polymer Journal 36, 933–936 (2004).
CrossRef
Google Scholar
Anquetil, P.A., Rinderknecht, D., Vandesteeg, N.A., Madden, J.D., and Hunter, I.W. Large strain actuation in polypyrrole actuators. Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD). 5385, 380–387. 2004-. San Diego, CA, SPIE.
Google Scholar
Madden, J.D., Madden, P.G., and Hunter, I.W. Conducting polymer actuators as engineering materials. In Yoseph Bar-Cohen (ed.) Proceeding of SPIE Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices. SPIE Press, Bellingham, WA (2002).
Google Scholar
Madden, J.D., Madden, P.G., and Hunter, I.W. Characterization of polypyrrole actuators: Modeling and performance. In Yoseph Bar-Cohen (ed.) Proceedings of SPIE 8th Annual Symposium on Smart Structures and Materials: Electroactive Polymer Actuators and Devices. SPIE, Bellingham WA (2001).
Google Scholar
Hara, S., Zama, T., Takashima, W., and Kaneto, K. Free-Standing polypyrrole actuators with response rate of 10.8% s−1. Synthetic Metals 149, 199–201 (2005).
CrossRef
Google Scholar
Wang, X.Z., Shapiro, B., and Smela, E. Visualizing ion currents in conjugated polymers. Advanced Materials 16, 1605-+ (2004).
CrossRef
Google Scholar
Madden, J.D. Conducting Polymer Actuators. Ph.D. Thesis. Massachusetts Institute of Technology, Cambridge, MA (2000).
Google Scholar
Kaneko, M., Fukui, M., Takashima, W., and Kaneto, K. Electrolyte and strain dependences of chemomechanical deformation of polyaniline film. Synthetic Metals 84, 795–796 (1997).
CrossRef
Google Scholar
Spinks, G.M., Zhou, D.Z., Liu, L., and Wallace, G.G. The amounts per cycle of polypyrrole electromechanical actuators. Smart Materials & Structures 12, 468–472 (2003).
CrossRef
Google Scholar
Madden, J.D., Cush, R.A., Kanigan, T.S., and Hunter, I.W. Fast contracting polypyrrole actuators. Synthetic Metals 113, 185–193 (2000).
CrossRef
Google Scholar
Lacroix, J.C., Kanazawa, K.K., and Diaz, A. Polyaniline: A very fast electrochromic material. Journal of the Electrochemical Society 136, 1308–1313 (1989).
CrossRef
Google Scholar
Vandesteeg, N., Madden, P.G.A., Madden, J.D., Anquetil, P.A., and Hunter, I.W. Synthesis and characterization of EDOT-based conducting polymer actuators. Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD). 5051, 349–356. 2003-. San Diego, CA, SPIE.
Google Scholar
Yamaura, M., Hagiwara, T., and Iwata, K. Enhancement of electrical conductivity of polypyrrole film by stretching: Counter ion effect. Synthetic Metals 26, 209–224 (1988).
CrossRef
Google Scholar
Ding, J. et al. High performance conducting polymer actuators utilizing a tubular geometry and helical wire interconnects. Synthetic Metals 8 (in press).
Google Scholar
Kaneto, K., Min, Y., MacDiarmidm, and Alan, G. Conductive polyaniline laminates. 96. 94.
Google Scholar
Gregory, R.V., Kimbrell, W.C., and Kuhn, H.H. Conductive textiles. Synthetic Metals 28, C823–C835 (1989).
CrossRef
Google Scholar
Lu, W. et al. Use of ionic lquids for pi-conjugagted polymer electrochemical devices. Science 297, 983–987 (2002).
CrossRef
Google Scholar
Yamaura, M., Sato, K., and Iwata, K. Memory effect of electrical conductivity upon the counter-anion exchange of polypyrrole films. Synthetic Metals 48, 337–354 (1992).
CrossRef
Google Scholar
Sato, K., Yamaura, M., and Hagiwara, T. Study on the electrical conduction mechanism of polypyrrole films. Synthetic Metals 40, 35–48 (1991).
CrossRef
Google Scholar
Yamaura, M., Sato, K., and Hagiwara, T. Effect of counter-anion exchange on electrical conductivity of polypyrrole films. Synthetic Metals 39, 43–60 (1990).
CrossRef
Google Scholar
Yamaura, M., Hagiwara, T., and Iwata, K. Enhancement of electrical conductivity of polypyrrole film by stretching: counter ion effect. Synthetic Metals 26, 209–224 (1988).
CrossRef
Google Scholar
Maw, S., Smela, E., Yoshida, K., Sommer-Larsen, P., and Stein, R.B. The effects of varying deposition current on bending behvior in PPy(DBS)-actuated bending beams. Sensors and Actuators A 89, 175–184. 2001.
CrossRef
Google Scholar
Shimoda, S. and Smela, E. The effect of pH on polymerization and volume change in PPy(DBS). Electrochimica Acta 44, 219–238 (1998).
CrossRef
Google Scholar
Kaneko, M., Fukui, M., Takashima, W., and Kaneto, K. Electrolyte and strain dependences of chemomechanical deformation of polyaniline film. Synthetic Metals 84, 795–796 (1997).
CrossRef
Google Scholar
Pei, Q. and Inganas, O. Electrochemical application of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. Journal of Physical Chemistry 96, 10507–10514 (1992).
CrossRef
Google Scholar
Madden, J.D.W., Schmid, B., Hechinger, M., Lafontaine, S.R., Madden, P.G.A., Hover, F.S., Kimball, R., and Hunter, I.W. Application of polypyrrole actuators: Feasibility of variable camber foils. Oceanic Engineering, IEEE Journal of 29(3), 738–749. 2004.
CrossRef
Google Scholar
Madden, J.D., Cush, R.A., Kanigan, T.S., and Hunter, I.W. Fast contracting polypyrrole actuators. Synthetic Metals 113, 185–193 (2000).
CrossRef
Google Scholar
Anquetil, P.A., Rinderknecht, D., Vandesteeg, N.A., Madden, J.D., and Hunter, I.W. Large strain actuation in polypyrrole actuators. Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD). 5385, 380–387. 2004-. San Diego, CA, USA, SPIE.
Google Scholar
Hara, S., Zama, T., Tanaka, N., Takashima, W., and Kaneto, K. Artificial fibular muscles with 20% strain based on polypyrrole-metal coil composites. Chemistry Letters 34, 784–785 (2005).
CrossRef
Google Scholar
Smela, E. and Gadegaard, N. Surprising volume change in PPy(DBS): An atomic force microscopy study. Advanced Materials 11, 953–957 (1999).
CrossRef
Google Scholar
Smela, E. and Gadegaard, N. Surprising volume change in PPy(DBS): An atomic force microscopy study. Advanced Materials 11, 953–957 (1999).
CrossRef
Google Scholar
Smela, E., Kallenbach, M., and Holdenried, J. Electrochemically driven polypyrrole bilayers for moving and positioning bulk micromachined silicon plates. Journal of Microelectromechanical Systems. 8, 373 (1999).
CrossRef
Google Scholar
Smela, E., Inganas, O., and Lundstrom, I. Conducting polymers as artificial muscles: hallenges and possibilities. Journal of Micromechanics & Microengineering 3, 203–205 (1993).
CrossRef
Google Scholar
Wallace, G. et al. Ionic liquids and helical interconnects: bringing the electronic braille screen closer to reality. Proceedings of SPIE Smart Structures and Materials (in press), (2003).
Google Scholar
Madden, J.D. Actuator selection for variable camber foils. Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD). 5385, 442–448. 2004-. San Diego, CA, USA, SPIE.
Google Scholar
DellaSanta, A., Mazzoldi, A., and DeRossi, D. Steerable microcatheters actuated by embedded conducting polymer structures. Journal of Intelligent Material Systems and Structures 7, 292–300 (1996).
CrossRef
Google Scholar
Elias, H.-G. Mega Molecules. Springer-Verlag, Berlin (1987).
Google Scholar
Kohlman, R.S. and Epstein, A.J. Insulator-metal transistion and inhomogeneous metallic state in conducting polymers. In Skotheim, T.A., Elsenbaumer, R.L., and Reynolds, J.R. (eds.) Handbook of Conducting Polymers. Marcel Dekker, New York (1998).
Google Scholar
Atkins, P.W. Physical Chemistry. W.H. Freeman, New York (1990).
Google Scholar
Kittel, Charles. Introduction to Solid State Physcis. 66., John Wiley & Sons, New York
Google Scholar
Roth, S. One-Dimensional Metals. Springer-Verlag, New York (1995).
Google Scholar
Noda, A. and Watanabe, M. Electrochimica Acta
45, 1265–1270 (2000).
CrossRef
Google Scholar
Jones, E.T., Chao, E., and Wrighton, M.J. Preparation and characterization of molecule-based transistors with a 50 nm separation. Journal of the American Chemical Society 109, 5526–5529 (1987).
CrossRef
Google Scholar
Izadi-Najafabadi, A., Tan, D.T.H., and Madden, J.D.W. Towards high power polypyrrole-carbon capacitors. Synthetic Metals 152, 129–132 (2005).
CrossRef
Google Scholar
Arbizzani, C., Mastroagostino, M., and Sacrosati, B. Conducting polymers for batteries, supercapacitors and optical devices. In Nalwa, H.S. (ed.) Handbook of Organic and Conductive Molecules and Polymers. John Wiley & Sons, Chichester (1997).
Google Scholar
Hunter, I.W. and Lafontaine, S.A comparison of muscle with artificial actuators. Technical Digest IEEE Solid State Sensors and Actuators Workshop. 178–185. 92. IEEE.
Google Scholar
Anquetil, P.A., Yu, H., Madden, J.D., Swager, T.M., and Hunter, I.W. Recent advances in thiophene-based molecular actuators. Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD). 5051, 42–53. 2003-. San Diego, CA, SPIE.
Google Scholar
Marsella MJ, Reid RJ, Estassi S, and Wang LS. Tetra[2,3-thienylene]: A building block for single-molecule electromechanical actuators. Journal of the American Chemical Society 124(42), 12507–12510 (2002).
CrossRef
Google Scholar
Baker, C.K. and Reynolds, J.R. A quartz microbalance study of the electrosynthesis of polypyrrole. Journal of Electroanalytical Chemistry 251, 307–322 (1988).
CrossRef
Google Scholar
Yamaura, M., Sato, K., and Iwata, K. Memory effect of electrical conductivity upon the counter-anion exchange of polypyrrole films. Synthetic Metals 48, 337–354 (1992).
CrossRef
Google Scholar
Yamaura, M., Sato, K., and Hagiwara, T. Effect of counter-anion exchange on electrical conductivity of polypyrrole films. Synthetic Metals 39, 43–60 (1990).
CrossRef
Google Scholar
Ding, J. et al. High performance conducting polymer actuators utilizing a tubular geometry and helical wire interconnects. Synthetic Metals 138, 391–398 (2003).
CrossRef
Google Scholar
Zama, T., Hara, S., Takashima, W., and Kaneto, K. Comparison of cxonducting polymer actuators based on polypyrrole doped with Bf4(-), Pf6(-), Cf3so3-, and Clo4-. Bulletin of the Chemical Society of Japan 78, 506–511 (2005).
CrossRef
Google Scholar
Spinks, G.M., Xi, B.B., Zhou, D.Z., Truong, V.T., and Wallace, G.G. Enhanced control and stability of polypyrrole electromechanical actuators. Synthetic Metals 140, 273–280 (2004).
CrossRef
Google Scholar
Madden, P.G.A. Ph. D. Thesis: Development and modeling of conducting polymer actuators and demonstration of a conducting polymer-based feedback loop. MIT, Cambridge, MA (2003).
Google Scholar
Spinks, G.M. et al. Ionic liquids and polypyrrole helix tubes: Bringing the electronic Braille screen closer to reality. Proceedings of SPIE Smart Structures and Materials 5051, 372–380 (2003).
Google Scholar
Spinks, G.M. and Truong, V.T. Work-per-cycle analysis for electromechanical actuators. Sensors and Actuators A-Physical 119, 455–461 (2005).
CrossRef
Google Scholar
Madden, J.D., Rinderknecht, D., Anquetil, P.A., and Hunter, I.W. Cycle life and load in polypyrrole actuators. Sensors and Actuators A (2005).
Google Scholar
Penner, R.M. and Martin, C.R. Electrochemical investigations of electronically conductive polymers. 2. Evaluation of charge-transport rates in polypyrrole using an alternating current impedance method. Journal of Physical Chemistry 93, 984–989 (1989).
CrossRef
Google Scholar
Penner, Reginald M., Van Dyke, Leon S., and Martin, Charles R. Electrochemical evaluation of charge-transport rates in polypyrrole. Journal of Physical Chemistry 92, 5274–5282. 88.
Google Scholar
Mao, H., Ochmanska, J., Paulse, C.D., and Pickup, P.G. Ion transport in pyrrole-based polymer films. Faraday Discussions of the Chemical Society 88, 165–176 (1989).
CrossRef
Google Scholar
Bull, R.A., Fan, F.-R.F., and Bard, A.J. Polymer films on electrodes. Journal of the Electrochemical Society 129, 1009–1015 (1982).
CrossRef
Google Scholar
Tanguy, J. and Hocklet, M. Capacitive charge and noncapacitive charge in conducting polymer electrodes. Journal of the Electrochemical Society: Electrochemical Science and Technology 795–801 (1987).
Google Scholar
Posey, F. A. and Morozumi, T. Theory of potentiostatic and galvanostatic charging of the double layer in poirous electrodes. Journal of the Electrochemical Society 113(2), 176–184. 66.
Google Scholar
Yeu, T., Nguyen, T.V., and White, R.E. A mathematical model for predicting cyclic voltammograms of electrically conductive polypyrrole. Journal of the Electrochemical Society: Electrochemical Science and Technology 1971–1976 (1988).
Google Scholar
Tanguy, J., Mermilliod, N., and Hocklet, M. Capacitive charge and noncapacitive charge in conducting polymer electrodes. Journal of the Electrochemical Society: Electrochemical Science and Technology 795–801 (1987).
Google Scholar
Yu H., Anquetil, P.A., Pullen, A.E., Madden, J.D., Madden, P.G., Swager, T.M., and Hunter, I.W. Molecular Actuators. 2002.
Google Scholar
Della Santa, A., Mazzoldi, A., Tonci, C., and De Rossi, D. Passive mechanical properties of polypyrrole films: A continuum poroelastic model. Materials Science and Engineering C 5, 101–109 (1997).
CrossRef
Google Scholar
Della Santa, A., Mazzoldi, A., and De Rossi, D. Journal of Smart Material Systems and Structures 7, 292–300 (1999).
Google Scholar
Madden, J.D.W., Vandesteeg, N.A., Anquetil, P.A., Madden, P.G.A., Takshi, A., Pytel, R.Z., Lafontaine, S.R., Wieringa, P.A., and Hunter, I.W. Artificial muscle technology: physical principles and naval prospects. Oceanic Engineering, IEEE Journal of 29(3), 706–728. 2004.
Google Scholar
Otero, T.F. Artificial muscles, electrodissolution and redox processes in conducting polymers. In Nalwa, H.S. (ed.) Handbook of Organic and Conductive Molecules and Polymers. John Wiley & Sons, Chichester (1997).
Google Scholar
Bard, A.J. and Faulkner, L.R. Electrochemical Methods, Fundamentals and Applications. John Wiley & Sons, New York (1980).
Google Scholar
Ren, X. and Pickup, P.G. The origin of the discrepancy between the low frequency AC capacitances and voltammetric capacitances of conducting polymers. Journal of Electroanalytical Chemistry 372, 289–291 (1994).
CrossRef
Google Scholar
Kim, J.J., Amemiya, T., Tryk, D.A., Hashimoto, K., and Fujishima, A. Charge transport processes in electrochemically deposited poly(pyrrole) and poly(N-methylpyrrole) thin films. Journal of Electroanalytical Chemistry 416, 113–119 (1996).
CrossRef
Google Scholar
Madden, J.D. et al. Artificial muscle technology: Physical principles and naval prospects. IEEE Journal of Oceanic Engineering 24 pages (2004).
Google Scholar
Barisci, J.N., Spinks, G.M., Wallace, G.G., Madden, J.D., and Baughman, R.H. Increased actuation rate of electromechanical carbon nanotube actuators using potential pulses with resistance compensation. Smart Materials & Structures 12, 549–555 (2003).
CrossRef
Google Scholar
Hollerbach, J., Hunter, I.W., and Ballantyne, J. A comparative analysis of actuator technologies for robotics. In Khatib, O., Craig, J., and Lozano-Perez (eds.) The Robotics Review 2. MIT Press, Cambridge, MA (1992).
Google Scholar
Madden, J. D. W., Schmid, B., Hechinger, M., Lafontaine, S. R., Madden, P. G. A., Hover, F. S., Kimball, R., and Hunter, I. W. Application of polypyrrole actuators: feasibility of variable camber foils. Oceanic Engineering, IEEE Journal of 29(3), 738–749. 2004.
Google Scholar
Madden, J.D. et al. Artificial muscle technology: Physical principles and naval prospects. IEEE Journal of Oceanic Engineering 24 pages (2004).
Google Scholar
Anquetil, P.A., Yu, H., Madden, J.D., Swager, T.M., and Hunter, I.W. Recent advances in thiophene-based molecular actuators. Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD). 5051, 42–53. 2003-. San Diego, CA, USA, SPIE.
Google Scholar
Anquetil, P.A., Rinderknecht, D., Vandesteeg, N.A., Madden, J.D., and Hunter, I.W. Large strain actuation in polypyrrole actuators. Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD). 5385, 380–387. 2004. San Diego, CA, SPIE.
Google Scholar
Nakashima, T. et al. Enhanced electrochemical strain in polypyrrole films. Current Applied Physics 5, 202–208 (2005).
CrossRef
Google Scholar
Lu, W. et al. Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 297, 983–987 (2002).
CrossRef
Google Scholar