Skip to main content

Polypyrrole Actuators: Properties and Initial Applications

  • Chapter
Electroactive Polymers for Robotic Applications

5.1 Summary

Polypyrrole actuators are low-voltage (1–3 V), moderate to large strain (2–35%), and relatively high stress (up to 34 MPa) actuator materials. Strain rates are moderate to low, reaching 11%/s, and frequency response can reach several hertz. Faster response (> 1 kHz) is anticipated in nanostructured materials. Forces can be maintained with minimal power expenditure. This chapter reports on the current status and some of the anticipated properties of conducting polymer actuators. Applications investigated to date include braille cells, shape changing stents, and variable camber foils. Situations where low voltage operation is valuable and volume or mass are constrained favor the use of conducting polymers.

Polypyrrole and other conducting polymers are typically electrochemically driven and can be constructed in linear or bending (bilayer) geometries. Synthesis can be by chemical or electrochemical means, and raw materials are generally very low in cost. These polymers are electronically conducting organic materials. They also allow ions to diffuse or migrate within them. An Increase in the voltage applied to a polymer electrode leads to removal of electrons and an increasingly positive charge within the volume of the polymer. This charge is balanced by negative ions that enter the polymer from a neighboring electrolyte phase (or by positive ions that leave). Ion insertion is generally accompanied by expansion of the polymer. The ions, solvent, and synthesis conditions determine the extent of this expansion, which can be anisotropic. A change in modulus has also been observed as a function of the oxidation state.

Models relating charge, strain, voltage, stress, and current have been developed that allow designers to evaluate the feasibility of designs. One of these modeling approaches is presented with the aim of enabling selection of appropriate device geometry.

The field of conducting polymer actuators is developing rapidly with larger strains, stresses, cycle lifetimes, and rates reported every year. The background needed to understand these developments and to decide if polypyrrole and in general conducting polymer actuators are appropriate for use in a given application is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.11 References

  1. Madden, J. D. W., Vandesteeg, N. A., Anquetil, P. A., Madden, P. G. A., Takshi, A., Pytel, R. Z., Lafontaine, S. R., Wieringa, P. A., and Hunter, I. W. Artificial muscle technology: Physical principles and naval prospects. Oceanic Engineering, IEEE Journal of 29(3), 706–728 (2004).

    Article  Google Scholar 

  2. Baughman, R.H. Conducting polymer artificial muscles. Synthetic Metals 78, 339–353 (1996).

    Article  Google Scholar 

  3. Baughman, R.H., Shacklette, R.L., and Elsenbaumer, R.L. Micro electromechanical actuators based on conducting polymers. In Lazarev, P.I. (ed.) Topics in Molecular. Organization and Engineering, Vol.7: Molecular Electronics. Kluwer, Dordrecht (1991).

    Google Scholar 

  4. Otero, T.F. Artificial muscles, electrodissolution and redox processes in conducting polymers. In Nalwa, H.S. (ed.) Handbook of organic and Conductive Molecules and Polymers. John Wiley & Sons, Chichester (1997).

    Google Scholar 

  5. Pei, Q. and Inganas, O. Electrochemical applications of the beam bending method; a novel way to study ion transport in electroactive polymers. Solid State Ionics 60, 161–166 (1993).

    Article  Google Scholar 

  6. Herod, T.E. and Schlenoff, J.B. Doping induced strain in polyaniline: Stretchoelectrochemistry. Chemistry of Materials 5, 951–955 (1993).

    Article  Google Scholar 

  7. Kaneto, K., Kaneko, M., and Takashima, W. Response of chemomechanical deformation in polyaniline film on variety of anions. Japanese Journal of Applied Physics 34, Part 2, L837–L840 (1995).

    Article  Google Scholar 

  8. Pei, Q. and Inganas, O. Electrochemical application of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. Journal of Physical Chemistry 96, 10507–10514 (1992).

    Article  Google Scholar 

  9. Baughman, R.H. Conducting polymer artificial muscles. Synthetic Metals 78, 339–353 (1996).

    Article  Google Scholar 

  10. Madden, J.D., Madden, P.G., Anquetil, P.A., and Hunter, I.W. Load and time dependence of displacement in a conducting polymer actuator. Materials Research Society Proceedings 698, 137–144 (2002).

    Google Scholar 

  11. Mazzoldi, A., Della Santa, A., and De Rossi, D. Conducting polymer actuators: Properties and modeling. In Osada, Y. and De Rossi, D.E. (eds.) Polymer Sensors and Actuators. Springer Verlag, Heidelberg (1999).

    Google Scholar 

  12. Madden, J.D., Madden, P.G., and Hunter, I.W. Conducting polymer actuators as engineering materials. In Yoseph Bar-Cohen (ed.) Proceeding of SPIE Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices. SPIE Press, Bellingham, WA (2002).

    Google Scholar 

  13. Mazzoldi, A., Della Santa, A., and De Rossi, D. Conducting polymer actuators: Properties and modeling. In Osada, Y. and De Rossi, D.E. (eds.) Polymer Sensors and Actuators. Springer Verlag, Heidelberg (1999).

    Google Scholar 

  14. Spinks, G., Liu, L., Wallace, G., and Zhou, D. Strain response from polypyrrole actuators under load. Advanced Functional Materials 12, 437–440 (2002).

    Article  Google Scholar 

  15. Smela, E. and Gadegaard, N. Volume change in polypyrrole studied by atomic force microscopy. Journal of Physical Chemistry B 105, 9395–9405 (2001).

    Article  Google Scholar 

  16. Hara, S., Zama, T., Takashima, W., and Kaneto, K. Gel-Like polypyrrole based artificial muscles with extremely large strain. Polymer Journal 36, 933–936 (2004).

    Article  Google Scholar 

  17. Anquetil, P.A., Rinderknecht, D., Vandesteeg, N.A., Madden, J.D., and Hunter, I.W. Large strain actuation in polypyrrole actuators. Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD). 5385, 380–387. 2004-. San Diego, CA, SPIE.

    Google Scholar 

  18. Madden, J.D., Madden, P.G., and Hunter, I.W. Conducting polymer actuators as engineering materials. In Yoseph Bar-Cohen (ed.) Proceeding of SPIE Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices. SPIE Press, Bellingham, WA (2002).

    Google Scholar 

  19. Madden, J.D., Madden, P.G., and Hunter, I.W. Characterization of polypyrrole actuators: Modeling and performance. In Yoseph Bar-Cohen (ed.) Proceedings of SPIE 8th Annual Symposium on Smart Structures and Materials: Electroactive Polymer Actuators and Devices. SPIE, Bellingham WA (2001).

    Google Scholar 

  20. Hara, S., Zama, T., Takashima, W., and Kaneto, K. Free-Standing polypyrrole actuators with response rate of 10.8% s−1. Synthetic Metals 149, 199–201 (2005).

    Article  Google Scholar 

  21. Wang, X.Z., Shapiro, B., and Smela, E. Visualizing ion currents in conjugated polymers. Advanced Materials 16, 1605-+ (2004).

    Article  Google Scholar 

  22. Madden, J.D. Conducting Polymer Actuators. Ph.D. Thesis. Massachusetts Institute of Technology, Cambridge, MA (2000).

    Google Scholar 

  23. Kaneko, M., Fukui, M., Takashima, W., and Kaneto, K. Electrolyte and strain dependences of chemomechanical deformation of polyaniline film. Synthetic Metals 84, 795–796 (1997).

    Article  Google Scholar 

  24. Spinks, G.M., Zhou, D.Z., Liu, L., and Wallace, G.G. The amounts per cycle of polypyrrole electromechanical actuators. Smart Materials & Structures 12, 468–472 (2003).

    Article  Google Scholar 

  25. Madden, J.D., Cush, R.A., Kanigan, T.S., and Hunter, I.W. Fast contracting polypyrrole actuators. Synthetic Metals 113, 185–193 (2000).

    Article  Google Scholar 

  26. Lacroix, J.C., Kanazawa, K.K., and Diaz, A. Polyaniline: A very fast electrochromic material. Journal of the Electrochemical Society 136, 1308–1313 (1989).

    Article  Google Scholar 

  27. Vandesteeg, N., Madden, P.G.A., Madden, J.D., Anquetil, P.A., and Hunter, I.W. Synthesis and characterization of EDOT-based conducting polymer actuators. Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD). 5051, 349–356. 2003-. San Diego, CA, SPIE.

    Google Scholar 

  28. Yamaura, M., Hagiwara, T., and Iwata, K. Enhancement of electrical conductivity of polypyrrole film by stretching: Counter ion effect. Synthetic Metals 26, 209–224 (1988).

    Article  Google Scholar 

  29. Ding, J. et al. High performance conducting polymer actuators utilizing a tubular geometry and helical wire interconnects. Synthetic Metals 8 (in press).

    Google Scholar 

  30. Kaneto, K., Min, Y., MacDiarmidm, and Alan, G. Conductive polyaniline laminates. 96. 94.

    Google Scholar 

  31. Gregory, R.V., Kimbrell, W.C., and Kuhn, H.H. Conductive textiles. Synthetic Metals 28, C823–C835 (1989).

    Article  Google Scholar 

  32. Lu, W. et al. Use of ionic lquids for pi-conjugagted polymer electrochemical devices. Science 297, 983–987 (2002).

    Article  Google Scholar 

  33. Yamaura, M., Sato, K., and Iwata, K. Memory effect of electrical conductivity upon the counter-anion exchange of polypyrrole films. Synthetic Metals 48, 337–354 (1992).

    Article  Google Scholar 

  34. Sato, K., Yamaura, M., and Hagiwara, T. Study on the electrical conduction mechanism of polypyrrole films. Synthetic Metals 40, 35–48 (1991).

    Article  Google Scholar 

  35. Yamaura, M., Sato, K., and Hagiwara, T. Effect of counter-anion exchange on electrical conductivity of polypyrrole films. Synthetic Metals 39, 43–60 (1990).

    Article  Google Scholar 

  36. Yamaura, M., Hagiwara, T., and Iwata, K. Enhancement of electrical conductivity of polypyrrole film by stretching: counter ion effect. Synthetic Metals 26, 209–224 (1988).

    Article  Google Scholar 

  37. Maw, S., Smela, E., Yoshida, K., Sommer-Larsen, P., and Stein, R.B. The effects of varying deposition current on bending behvior in PPy(DBS)-actuated bending beams. Sensors and Actuators A 89, 175–184. 2001.

    Article  Google Scholar 

  38. Shimoda, S. and Smela, E. The effect of pH on polymerization and volume change in PPy(DBS). Electrochimica Acta 44, 219–238 (1998).

    Article  Google Scholar 

  39. Kaneko, M., Fukui, M., Takashima, W., and Kaneto, K. Electrolyte and strain dependences of chemomechanical deformation of polyaniline film. Synthetic Metals 84, 795–796 (1997).

    Article  Google Scholar 

  40. Pei, Q. and Inganas, O. Electrochemical application of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. Journal of Physical Chemistry 96, 10507–10514 (1992).

    Article  Google Scholar 

  41. Madden, J.D.W., Schmid, B., Hechinger, M., Lafontaine, S.R., Madden, P.G.A., Hover, F.S., Kimball, R., and Hunter, I.W. Application of polypyrrole actuators: Feasibility of variable camber foils. Oceanic Engineering, IEEE Journal of 29(3), 738–749. 2004.

    Article  Google Scholar 

  42. Madden, J.D., Cush, R.A., Kanigan, T.S., and Hunter, I.W. Fast contracting polypyrrole actuators. Synthetic Metals 113, 185–193 (2000).

    Article  Google Scholar 

  43. Anquetil, P.A., Rinderknecht, D., Vandesteeg, N.A., Madden, J.D., and Hunter, I.W. Large strain actuation in polypyrrole actuators. Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD). 5385, 380–387. 2004-. San Diego, CA, USA, SPIE.

    Google Scholar 

  44. Hara, S., Zama, T., Tanaka, N., Takashima, W., and Kaneto, K. Artificial fibular muscles with 20% strain based on polypyrrole-metal coil composites. Chemistry Letters 34, 784–785 (2005).

    Article  Google Scholar 

  45. Smela, E. and Gadegaard, N. Surprising volume change in PPy(DBS): An atomic force microscopy study. Advanced Materials 11, 953–957 (1999).

    Article  Google Scholar 

  46. Smela, E. and Gadegaard, N. Surprising volume change in PPy(DBS): An atomic force microscopy study. Advanced Materials 11, 953–957 (1999).

    Article  Google Scholar 

  47. Smela, E., Kallenbach, M., and Holdenried, J. Electrochemically driven polypyrrole bilayers for moving and positioning bulk micromachined silicon plates. Journal of Microelectromechanical Systems. 8, 373 (1999).

    Article  Google Scholar 

  48. Smela, E., Inganas, O., and Lundstrom, I. Conducting polymers as artificial muscles: hallenges and possibilities. Journal of Micromechanics & Microengineering 3, 203–205 (1993).

    Article  Google Scholar 

  49. Wallace, G. et al. Ionic liquids and helical interconnects: bringing the electronic braille screen closer to reality. Proceedings of SPIE Smart Structures and Materials (in press), (2003).

    Google Scholar 

  50. Madden, J.D. Actuator selection for variable camber foils. Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD). 5385, 442–448. 2004-. San Diego, CA, USA, SPIE.

    Google Scholar 

  51. DellaSanta, A., Mazzoldi, A., and DeRossi, D. Steerable microcatheters actuated by embedded conducting polymer structures. Journal of Intelligent Material Systems and Structures 7, 292–300 (1996).

    Article  Google Scholar 

  52. Elias, H.-G. Mega Molecules. Springer-Verlag, Berlin (1987).

    Google Scholar 

  53. Kohlman, R.S. and Epstein, A.J. Insulator-metal transistion and inhomogeneous metallic state in conducting polymers. In Skotheim, T.A., Elsenbaumer, R.L., and Reynolds, J.R. (eds.) Handbook of Conducting Polymers. Marcel Dekker, New York (1998).

    Google Scholar 

  54. Atkins, P.W. Physical Chemistry. W.H. Freeman, New York (1990).

    Google Scholar 

  55. Kittel, Charles. Introduction to Solid State Physcis. 66., John Wiley & Sons, New York

    Google Scholar 

  56. Roth, S. One-Dimensional Metals. Springer-Verlag, New York (1995).

    Google Scholar 

  57. Noda, A. and Watanabe, M. Electrochimica Acta 45, 1265–1270 (2000).

    Article  Google Scholar 

  58. Jones, E.T., Chao, E., and Wrighton, M.J. Preparation and characterization of molecule-based transistors with a 50 nm separation. Journal of the American Chemical Society 109, 5526–5529 (1987).

    Article  Google Scholar 

  59. Izadi-Najafabadi, A., Tan, D.T.H., and Madden, J.D.W. Towards high power polypyrrole-carbon capacitors. Synthetic Metals 152, 129–132 (2005).

    Article  Google Scholar 

  60. Arbizzani, C., Mastroagostino, M., and Sacrosati, B. Conducting polymers for batteries, supercapacitors and optical devices. In Nalwa, H.S. (ed.) Handbook of Organic and Conductive Molecules and Polymers. John Wiley & Sons, Chichester (1997).

    Google Scholar 

  61. Hunter, I.W. and Lafontaine, S.A comparison of muscle with artificial actuators. Technical Digest IEEE Solid State Sensors and Actuators Workshop. 178–185. 92. IEEE.

    Google Scholar 

  62. Anquetil, P.A., Yu, H., Madden, J.D., Swager, T.M., and Hunter, I.W. Recent advances in thiophene-based molecular actuators. Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD). 5051, 42–53. 2003-. San Diego, CA, SPIE.

    Google Scholar 

  63. Marsella MJ, Reid RJ, Estassi S, and Wang LS. Tetra[2,3-thienylene]: A building block for single-molecule electromechanical actuators. Journal of the American Chemical Society 124(42), 12507–12510 (2002).

    Article  Google Scholar 

  64. Baker, C.K. and Reynolds, J.R. A quartz microbalance study of the electrosynthesis of polypyrrole. Journal of Electroanalytical Chemistry 251, 307–322 (1988).

    Article  Google Scholar 

  65. Yamaura, M., Sato, K., and Iwata, K. Memory effect of electrical conductivity upon the counter-anion exchange of polypyrrole films. Synthetic Metals 48, 337–354 (1992).

    Article  Google Scholar 

  66. Yamaura, M., Sato, K., and Hagiwara, T. Effect of counter-anion exchange on electrical conductivity of polypyrrole films. Synthetic Metals 39, 43–60 (1990).

    Article  Google Scholar 

  67. Ding, J. et al. High performance conducting polymer actuators utilizing a tubular geometry and helical wire interconnects. Synthetic Metals 138, 391–398 (2003).

    Article  Google Scholar 

  68. Zama, T., Hara, S., Takashima, W., and Kaneto, K. Comparison of cxonducting polymer actuators based on polypyrrole doped with Bf4(-), Pf6(-), Cf3so3-, and Clo4-. Bulletin of the Chemical Society of Japan 78, 506–511 (2005).

    Article  Google Scholar 

  69. Spinks, G.M., Xi, B.B., Zhou, D.Z., Truong, V.T., and Wallace, G.G. Enhanced control and stability of polypyrrole electromechanical actuators. Synthetic Metals 140, 273–280 (2004).

    Article  Google Scholar 

  70. Madden, P.G.A. Ph. D. Thesis: Development and modeling of conducting polymer actuators and demonstration of a conducting polymer-based feedback loop. MIT, Cambridge, MA (2003).

    Google Scholar 

  71. Spinks, G.M. et al. Ionic liquids and polypyrrole helix tubes: Bringing the electronic Braille screen closer to reality. Proceedings of SPIE Smart Structures and Materials 5051, 372–380 (2003).

    Google Scholar 

  72. Spinks, G.M. and Truong, V.T. Work-per-cycle analysis for electromechanical actuators. Sensors and Actuators A-Physical 119, 455–461 (2005).

    Article  Google Scholar 

  73. Madden, J.D., Rinderknecht, D., Anquetil, P.A., and Hunter, I.W. Cycle life and load in polypyrrole actuators. Sensors and Actuators A (2005).

    Google Scholar 

  74. Penner, R.M. and Martin, C.R. Electrochemical investigations of electronically conductive polymers. 2. Evaluation of charge-transport rates in polypyrrole using an alternating current impedance method. Journal of Physical Chemistry 93, 984–989 (1989).

    Article  Google Scholar 

  75. Penner, Reginald M., Van Dyke, Leon S., and Martin, Charles R. Electrochemical evaluation of charge-transport rates in polypyrrole. Journal of Physical Chemistry 92, 5274–5282. 88.

    Google Scholar 

  76. Mao, H., Ochmanska, J., Paulse, C.D., and Pickup, P.G. Ion transport in pyrrole-based polymer films. Faraday Discussions of the Chemical Society 88, 165–176 (1989).

    Article  Google Scholar 

  77. Bull, R.A., Fan, F.-R.F., and Bard, A.J. Polymer films on electrodes. Journal of the Electrochemical Society 129, 1009–1015 (1982).

    Article  Google Scholar 

  78. Tanguy, J. and Hocklet, M. Capacitive charge and noncapacitive charge in conducting polymer electrodes. Journal of the Electrochemical Society: Electrochemical Science and Technology 795–801 (1987).

    Google Scholar 

  79. Posey, F. A. and Morozumi, T. Theory of potentiostatic and galvanostatic charging of the double layer in poirous electrodes. Journal of the Electrochemical Society 113(2), 176–184. 66.

    Google Scholar 

  80. Yeu, T., Nguyen, T.V., and White, R.E. A mathematical model for predicting cyclic voltammograms of electrically conductive polypyrrole. Journal of the Electrochemical Society: Electrochemical Science and Technology 1971–1976 (1988).

    Google Scholar 

  81. Tanguy, J., Mermilliod, N., and Hocklet, M. Capacitive charge and noncapacitive charge in conducting polymer electrodes. Journal of the Electrochemical Society: Electrochemical Science and Technology 795–801 (1987).

    Google Scholar 

  82. Yu H., Anquetil, P.A., Pullen, A.E., Madden, J.D., Madden, P.G., Swager, T.M., and Hunter, I.W. Molecular Actuators. 2002.

    Google Scholar 

  83. Della Santa, A., Mazzoldi, A., Tonci, C., and De Rossi, D. Passive mechanical properties of polypyrrole films: A continuum poroelastic model. Materials Science and Engineering C 5, 101–109 (1997).

    Article  Google Scholar 

  84. Della Santa, A., Mazzoldi, A., and De Rossi, D. Journal of Smart Material Systems and Structures 7, 292–300 (1999).

    Google Scholar 

  85. Madden, J.D.W., Vandesteeg, N.A., Anquetil, P.A., Madden, P.G.A., Takshi, A., Pytel, R.Z., Lafontaine, S.R., Wieringa, P.A., and Hunter, I.W. Artificial muscle technology: physical principles and naval prospects. Oceanic Engineering, IEEE Journal of 29(3), 706–728. 2004.

    Google Scholar 

  86. Otero, T.F. Artificial muscles, electrodissolution and redox processes in conducting polymers. In Nalwa, H.S. (ed.) Handbook of Organic and Conductive Molecules and Polymers. John Wiley & Sons, Chichester (1997).

    Google Scholar 

  87. Bard, A.J. and Faulkner, L.R. Electrochemical Methods, Fundamentals and Applications. John Wiley & Sons, New York (1980).

    Google Scholar 

  88. Ren, X. and Pickup, P.G. The origin of the discrepancy between the low frequency AC capacitances and voltammetric capacitances of conducting polymers. Journal of Electroanalytical Chemistry 372, 289–291 (1994).

    Article  Google Scholar 

  89. Kim, J.J., Amemiya, T., Tryk, D.A., Hashimoto, K., and Fujishima, A. Charge transport processes in electrochemically deposited poly(pyrrole) and poly(N-methylpyrrole) thin films. Journal of Electroanalytical Chemistry 416, 113–119 (1996).

    Article  Google Scholar 

  90. Madden, J.D. et al. Artificial muscle technology: Physical principles and naval prospects. IEEE Journal of Oceanic Engineering 24 pages (2004).

    Google Scholar 

  91. Barisci, J.N., Spinks, G.M., Wallace, G.G., Madden, J.D., and Baughman, R.H. Increased actuation rate of electromechanical carbon nanotube actuators using potential pulses with resistance compensation. Smart Materials & Structures 12, 549–555 (2003).

    Article  Google Scholar 

  92. Hollerbach, J., Hunter, I.W., and Ballantyne, J. A comparative analysis of actuator technologies for robotics. In Khatib, O., Craig, J., and Lozano-Perez (eds.) The Robotics Review 2. MIT Press, Cambridge, MA (1992).

    Google Scholar 

  93. Madden, J. D. W., Schmid, B., Hechinger, M., Lafontaine, S. R., Madden, P. G. A., Hover, F. S., Kimball, R., and Hunter, I. W. Application of polypyrrole actuators: feasibility of variable camber foils. Oceanic Engineering, IEEE Journal of 29(3), 738–749. 2004.

    Google Scholar 

  94. Madden, J.D. et al. Artificial muscle technology: Physical principles and naval prospects. IEEE Journal of Oceanic Engineering 24 pages (2004).

    Google Scholar 

  95. Anquetil, P.A., Yu, H., Madden, J.D., Swager, T.M., and Hunter, I.W. Recent advances in thiophene-based molecular actuators. Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD). 5051, 42–53. 2003-. San Diego, CA, USA, SPIE.

    Google Scholar 

  96. Anquetil, P.A., Rinderknecht, D., Vandesteeg, N.A., Madden, J.D., and Hunter, I.W. Large strain actuation in polypyrrole actuators. Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD). 5385, 380–387. 2004. San Diego, CA, SPIE.

    Google Scholar 

  97. Nakashima, T. et al. Enhanced electrochemical strain in polypyrrole films. Current Applied Physics 5, 202–208 (2005).

    Article  Google Scholar 

  98. Lu, W. et al. Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 297, 983–987 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Madden, J.D. (2007). Polypyrrole Actuators: Properties and Initial Applications. In: Kim, K.J., Tadokoro, S. (eds) Electroactive Polymers for Robotic Applications. Springer, London. https://doi.org/10.1007/978-1-84628-372-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-372-7_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-371-0

  • Online ISBN: 978-1-84628-372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics