K. Gurunathan, A.V. Murugan, R. Marimuthu, U.P. Mulik, and D.P. Amalnerkar (1999) Electrochemically synthesized conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Materials Chemistry and Physics, 61:173–191.
CrossRef
Google Scholar
Y. Bar-Cohen (2001) Electroactive Polymer (EAP) Actuators as Artificial Muscles (Reality, Potential, and Challenges). SPIE Press, Bellingham, Washington, USA.
Google Scholar
M. Zrínyi (2000) Intelligent polymer gels controlled by magnetic fields. Colloid & Polymer Science, 278(2):98–103.
CrossRef
Google Scholar
M. Ayre (2004) Biomimicry — A Review. European Space Agency, Work Package Report.
Google Scholar
Y. Bar-Cohen (2003) Actuation of biologically inspired intelligent robotics using artificial muscles. Industrial Robot: An International Journal, 30(4):331–337.
CrossRef
Google Scholar
D.A. Kingsley, R.D. Quinn, and R.E. Ritzmann (2003) A cockroach inspired robot with artificial muscles. International Symposium on Adaptive Motion of Animals and Machines (AMAM), Kyoto, Japan.
Google Scholar
S. Courty, J. Mine, A. R. Tajbakhsh, and E. M. Terentjev (2003) Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators. Europhysics Letters, 64(5): 654–660.
CrossRef
Google Scholar
Y. Bar-Cohen and C. Breazeal (2003) Biologically inspired intelligent robotics. Proceedings of SPIE International Symposium on Smart Structures and Materials, EAPAD
Google Scholar
Y. Bar-Cohen (2004) Biologically inspired robots as artificial inspectors — science fiction and engineering reality. Proceedings of 16th WCNDT — World Conference on NDT.
Google Scholar
R. Yoshida, T. Yamaguchi, and H. Ichijo (1996) Novel oscillating swelling-deswelling dynamic behavior of pH-sensitive polymer gels. Materials Science and Engineering, C(4):107–113.
Google Scholar
S. Umemoto, N. Okui, and T. Sakai (1991) Contraction behavior of poly(acrylonitrile) gel fibers. Polymer Gels, 257–270.
Google Scholar
K. Salehpoor, M. Shahinpoor, and M. Mojarrad (1996) Electrically controllable artificial PAN muscles. SPIE 1996, 2716:116–124.
Google Scholar
K. Choe (2004) Polyacrylonitrile as an Actuator Material: Properties, Characterizations and Applications, MS thesis, University of Nevada, Reno.
Google Scholar
A. Lendlein and S. Kelch (2002) Shape-memory polymers. Angewandte Chemie International Edition, 41: 2034–2057.
CrossRef
Google Scholar
http://www.azom.com/details.asp?ArticleID=1542
Google Scholar
http://www.crgrp.net/shapememorypolymer/smp.html
Google Scholar
A. Lendlein and R. Langer (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 296:1673–1676.
CrossRef
Google Scholar
F. Daerden and D. Lefeber (2001) The concept and design of pleated pneumatic artificial muscles. International Journal of Fluid Power, 2(3):41–50.
Google Scholar
C-P. Chou and B. Hannaford (1996) Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Transactions on Robotics and Automation, 12:90–102.
CrossRef
Google Scholar
F. Daerden and D. Lefeber (2002) Pneumatic artificial muscles: actuators for robotics and automation. European Journal of Mechanical and Environmental Engineering, 47(1):10–21.
Google Scholar
G.K. Klute and B. Hannaford (2000) Accounting for elastic energy storage in McKibben artificial muscle actuators. ASME Journal of Dynamic Systems, Measurement, and Control, 122(2):386–388.
CrossRef
Google Scholar
A. Aviram (1978) Mechanophotochemistry. Macromolecules, 11(6):1275–1280.
CrossRef
Google Scholar
A. Suzuki and T. Tanaka (1990) Phase transition in polymer gels induced by visible light. Nature, 346:345–347.
CrossRef
Google Scholar
S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa (2000) Reversible phase transitions in polymer gels induced by radiation forces. Nature, 408:78–181.
Google Scholar
N.C.R. Holme, L. Nikolova, S. Hvilsted, P.H. Rasmussen, R.H. Berg, and P.S. Ramanujam (1999) Optically induced surface relief phenomena in azobenzene polymers. Applied Physics Letters, 74(4):519–521.
CrossRef
Google Scholar
M. Zrínyi, L. Barsi, and A. Büki (1996) Deformation of ferrogels induced by nonuniform magnetic fields. Journal of Chemical Physics, 104(21):8750–8756.
CrossRef
Google Scholar
P.A. Voltairas, D.I. Fotiadis, and C.V. Massalas (2003) Modeling of hyperelasticity of magnetic field sensitive gels. Journal of Applied Physics, 93(6):3652–3656.
CrossRef
Google Scholar
D.K. Jackson, S. B. Leeb, A.H. Mitwalli, P. Narvaez, D. Fusco, and E.C. Lupton Jr (1997) Power electronic drives for magnetically triggered gels. IEEE Transactions on Industrial Electronics, 44(2):217–225.
CrossRef
Google Scholar
N. Kato, S. Yamanobe, Y. Sakai, and F. Takahashi (2001) Magnetically activated swelling for thermosensitive gel composed of interpenetrating polymer network constructed with poly(acrylamide) and poly(acrylic acid). Analytical Sciences, 17,supplement:i1125–i1128.
Google Scholar
M. Lokander (2004) Performance of Magnetorheological Rubber Materials. Thesis, KTH Fibre and Polymer Technology.
Google Scholar
M. Kamachi (2002) Magnetic polymers. Journal of Macromolecular Science Part C-Polymer Reviews, C42(4):541–561.
CrossRef
Google Scholar
P.A. Voltairas, D. I. Fotiadis, and L.K. Michalis (2002) Hydrodynamics of magnetic drug targeting. Journal of Biomechanics, 35:813–821.
CrossRef
Google Scholar
H. Ichijo, O. Hirasa, R. Kishi, M. Oowada, K. Sahara, E. Kokufuta, and S. Kohno (1995) Thermo-responsive gels. Radiation Physics and Chemistry, 46(2):185–190.
CrossRef
Google Scholar
E. T. Carlen, and C. H. Mastrangelo (1999) Simple, high actuation power, thermally activated paraffin microactuator. Transducers’ 99 Conference, Sendai, Japan, June 7–10.
Google Scholar
C. Folk, C-M. Ho, X. Chen, and F. Wudl (2003) Hydrogel microvalves with short response time. 226th American Chemical Society National Meeting, New York.
Google Scholar
J.D.W. Madden, A. N. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi, R.Z. Pytel, S.R. Lafontaine, P.A. Wieringa, and I.W. Hunter (2004) Artificial muscle technology: Physical principles and naval prospects. IEEE Journal of Oceanic Engineering, 20(3):706–728.
CrossRef
Google Scholar
Q.M. Zhang, V. Bharti, and X. Zhao (1998) Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science, 280:2101–2104.
CrossRef
Google Scholar
S. Ducharme, S. P. Palto, L. M. Blinov, and V. M. Fridkin (2000) Physics of two-dimensional ferroelectric polymers. Proceedings of the Workshop on First-Principles Calculations for Ferroelectrics, Feb 13–20, Aspen, CO, USA.
Google Scholar
G. Kofod (2001) Dielectric Elastomer Actuators. Dissertation, The Technical University of Denmark.
Google Scholar
F. Carpi, P. Chiarelli, A. Mazzoldi, and D. de Rossi (2003) Electromechanical characterization of dielectric elastomer planar actuators: Comparative evaluation of different electrode materials and different counterloads. Sensors and Actuators A, 107:85–95.
CrossRef
Google Scholar
A. Wingert, M. Lichter, S. Dubowsky, and M. Hafez (2002) Hyper-redundant robot manipulators actuated by optimized binary dielectric polymers. Proceedings of SPIE International Symposium on Smart Structures and Materials, EAPAD
Google Scholar
H.R. Choi, K. M. Jung, S.M. Ryew, J.-D. Nam, J.W. Jeon, J.C. Koo, and K. Tanie (2005) Biomimetic soft actuator: Design, modeling, control, and application, IEEE/ASME Transactions on Mechatronics, 10(5): 581–586.
CrossRef
Google Scholar
C. Hackl, H-Y Tang, R.D. Lorenz, L-S. Turng, and D. Schroder (2004) A multi-physics model of planar electro-active polymer actuators. Industry Applications Conference, 3:2125–2130
Google Scholar
J. Su, J.S. Harrison, and T. St. Clair (2000) Novel polymeric elastomers for actuation. Proceedings of IEEE International Symposium on Application of Ferroelectrics, 2:811–819.
Google Scholar
Y. Wang, C. Sun, E. Zhou, and J. Su (2004) Deformation mechanisms of electrostrictive graft elastomer. Smart Materials and Structures, 13:1407–1413.
CrossRef
Google Scholar
J. Kim and Y.B. Seo (2002) Electro-active paper actuators. Smart Materials and Structures, 11:355–360.
CrossRef
Google Scholar
Y. An and M.T. Shaw (2003) Actuating properties of soft gels with ordered iron particles: Basis for a shear actuator. Smart Materials and Structures, 12:157–163.
CrossRef
Google Scholar
D.K. Shenoy, D.L. Thomse III, A. Srinivasan, P. Keller, and B.R. Ratna (2002) Carbon coated liquid crystal elastomer film for artificial muscle applications. Sensors and Actuators A, 96:184–188.
CrossRef
Google Scholar
http://www.azom.com/news.asp?newsID=1220
Google Scholar
M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley (2004) Fast liquid-crystal elastomer swims into the dark. Nature Materials, 3:307–310.
CrossRef
Google Scholar
T. Tanaka, I. Nishio, S-T. Sun, and S. Ueno-Nishio (1982) Collapse of gels in an electric field. Science, 218:467–469.
CrossRef
Google Scholar
T. Shiga and T. Kurauchi (1990) Deformation of polyelectrolyte gels under the influence of electric field. Journal of Applied Polymer Science, 39:2305–2320.
CrossRef
Google Scholar
H. B. Schreyer, G. Nouvelle, K. J. Kim, and M. Shahinpoor (2000) Electrical activation of artificial muscles containing polyacrylonitrile gel fibers. Biomacromolecules, 1:642–647.
CrossRef
Google Scholar
K. Oguro, Y. Kawami, and H. Takenaka (1992) Bull. Government Industrial Research Institute Osaka, 43, 21.
Google Scholar
K.J. Kim, and M. Shahinpoor (2002) Development of three dimensional ionic polymer-metal composites as artificial muscles, Polymer, 43(3):797–802.
CrossRef
Google Scholar
M. Shahinpoor and K.J. Kim (2002) A novel physically-loaded and interlocked electrode developed for ionic polymer-metal composites (IPMCs), Sensors and Actuator: A. Physical, 96:125–132.
Google Scholar
R.H. Baughman (1996) Conducting polymer artificial muscles. Synthetic Metals, 78:339–353.
CrossRef
Google Scholar
M. Gerard, A. Chaubey, and B.D. Malhotra (2002) Application of conducting polymers to biosensors. Biosensors & Bioelectronics, 17:345–359.
CrossRef
Google Scholar
S. Hara, T. Zama, W. Takashima, and K. Kaneto (2005) Free-standing polypyrrole actuators with response rate of 10.8%s−1. Synthetic Metals, 149:199–201.
CrossRef
Google Scholar
S. Hara, T. Zama, W. Takashima, and K. Kaneto (2004) Polypyrrole-metal coil composite actuators as artificial muscle fibres. Synthetic Metals, 146:47–55.
CrossRef
Google Scholar
J.D. Madden, R. A. Cush, T.S. Kanigan, C.J. Brenan, and I. W. Hunter (1999) Encapsulated polypyrrole actuators. Synthetic Metals, 105:61–64.
CrossRef
Google Scholar
A. Bhattacharya, and A. De (1996) Conducting composites of polypyrrole and polyaniline: A review. Progress in Solid State Chemistry, 24:141–181.
CrossRef
Google Scholar
R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz (1999) Carbon nanotube actuators. Science, 284:1340–1344.
CrossRef
Google Scholar
N. Jalili, B.C. Goswami, A. Rao, and D. Dawson (2004) Functional fabric with embedded nanotube actuators/sensors. National Textile Center Research Briefs — Materials Competency (NTC Project: M03-CL07s).
Google Scholar
R.H. Baughman, A.A. Zakhidov, and W.A. de Heer (2002) Carbon nanotubes-the route toward applications. Science, 297:787–792.
CrossRef
Google Scholar
J.N. Barisci, G.M. Spinks, G.G. Wallace, J.D. Madden, and R.H. Baughman (2003) Increased actuation rate of electromechanical carbon nanotube actuators using potential pulses with resistance compensation. Smart Materials and Structures, 12:549–555.
CrossRef
Google Scholar
G.M. Spinks, G.G. Wallace, L.S. Fifield, L.R. Dalton, A. Mazzoldi, D. De Rossi, I.I. Khayrullin, and R.H. Baughman (2002) Pneumatic carbon nanotube actuators. Advanced Materials, 14(23):1728–1732.
CrossRef
Google Scholar
M. Tahhan, V-T Truong, G.M. Spinks, and G.G. Wallace (2003) Carbon nanotube and polyaniline composite actuators. Smart Materials and Structures, 12:626–632.
CrossRef
Google Scholar
Y. Hirokawa and T. Tanaka, (1984) Volume phase transitions in a non-ionic gel. Journal of Chemical Physics, 81:6379–6380.
CrossRef
Google Scholar
K. Choi, K.J. Kim, D. Kim, C. Manford, and S. Heo (2006) Performance characteristics of electro-chemically driven polyacrylonitrile fiber bundle actuators. Journal of Intelligent Material Systems and Structures (in print).
Google Scholar
K.J. Kim and M. Shahinpoor (2002) Development of three dimensional ionic polymer-metal composites as artificial muscles. Polymer, 43(3):797–802.
CrossRef
Google Scholar
J. Su, Z. Ounaies, J.S. Harrison, Y. Bar-Cohen, and S. Leary (2000) Electromechanically active polymer blends for actuation. Proceedings of SPIE-Smart Structures and Materials, 3987:140–148.
Google Scholar
J. Su, K. Hales, and T.B. Xu (2003) Composition and annealing effects on the response of electrostrictive graft elastomers. Proceedings of SPIE Smart Structures and Materials, 5051:191–199.
Google Scholar