Skip to main content

Active Polymers: An Overview

  • Chapter

1.4. Concluding Remarks

It can be seen from the above reported research and the scale of the academic interest in active polymer materials, that they have the potential to become an indispensable part of future technological developments. With each polymer having its own niche applications, they are bound to be the materials of future. With growing emphasis on interdisciplinary research, different active materials can be combined to develop tailor-made, multifunctional properties, where single materials can act as sensors, actuators, structural elements, etc.

To date, the robotics community has adopted only two major active polymer technologies: dielectric elastomers and ionic polymer-metal composites because the maturity of these two technologies is inevitable. However, other technologies are also quite promising and leaves one the great potentials to use them in robotic applications. Two other technologies that the robotics community is currently considering are conducting polymers and electrostrictive graft elastomers. In later chapters, we will focus on four major active polymer technologies: dielectric elastomers (Chapters 2 and 3), electrostrictive graft elastomers (Chapter 4), conducting polymers (Chapter 5), and ionic polymer-metal composites (Chapters 6–10). We all expect that the robotics community will adopt other promising active polymer materials as their maturity and availability improve.

Keywords

  • Ionic Polymer Metal Composite
  • Active Polymer
  • Dielectric Elastomer
  • Artificial Muscle
  • Electroactive Polymer

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-84628-372-7_1
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-84628-372-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.5. References

  1. K. Gurunathan, A.V. Murugan, R. Marimuthu, U.P. Mulik, and D.P. Amalnerkar (1999) Electrochemically synthesized conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Materials Chemistry and Physics, 61:173–191.

    CrossRef  Google Scholar 

  2. Y. Bar-Cohen (2001) Electroactive Polymer (EAP) Actuators as Artificial Muscles (Reality, Potential, and Challenges). SPIE Press, Bellingham, Washington, USA.

    Google Scholar 

  3. M. Zrínyi (2000) Intelligent polymer gels controlled by magnetic fields. Colloid & Polymer Science, 278(2):98–103.

    CrossRef  Google Scholar 

  4. M. Ayre (2004) Biomimicry — A Review. European Space Agency, Work Package Report.

    Google Scholar 

  5. Y. Bar-Cohen (2003) Actuation of biologically inspired intelligent robotics using artificial muscles. Industrial Robot: An International Journal, 30(4):331–337.

    CrossRef  Google Scholar 

  6. D.A. Kingsley, R.D. Quinn, and R.E. Ritzmann (2003) A cockroach inspired robot with artificial muscles. International Symposium on Adaptive Motion of Animals and Machines (AMAM), Kyoto, Japan.

    Google Scholar 

  7. S. Courty, J. Mine, A. R. Tajbakhsh, and E. M. Terentjev (2003) Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators. Europhysics Letters, 64(5): 654–660.

    CrossRef  Google Scholar 

  8. Y. Bar-Cohen and C. Breazeal (2003) Biologically inspired intelligent robotics. Proceedings of SPIE International Symposium on Smart Structures and Materials, EAPAD

    Google Scholar 

  9. Y. Bar-Cohen (2004) Biologically inspired robots as artificial inspectors — science fiction and engineering reality. Proceedings of 16th WCNDT — World Conference on NDT.

    Google Scholar 

  10. R. Yoshida, T. Yamaguchi, and H. Ichijo (1996) Novel oscillating swelling-deswelling dynamic behavior of pH-sensitive polymer gels. Materials Science and Engineering, C(4):107–113.

    Google Scholar 

  11. S. Umemoto, N. Okui, and T. Sakai (1991) Contraction behavior of poly(acrylonitrile) gel fibers. Polymer Gels, 257–270.

    Google Scholar 

  12. K. Salehpoor, M. Shahinpoor, and M. Mojarrad (1996) Electrically controllable artificial PAN muscles. SPIE 1996, 2716:116–124.

    Google Scholar 

  13. K. Choe (2004) Polyacrylonitrile as an Actuator Material: Properties, Characterizations and Applications, MS thesis, University of Nevada, Reno.

    Google Scholar 

  14. A. Lendlein and S. Kelch (2002) Shape-memory polymers. Angewandte Chemie International Edition, 41: 2034–2057.

    CrossRef  Google Scholar 

  15. http://www.azom.com/details.asp?ArticleID=1542

    Google Scholar 

  16. http://www.crgrp.net/shapememorypolymer/smp.html

    Google Scholar 

  17. A. Lendlein and R. Langer (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 296:1673–1676.

    CrossRef  Google Scholar 

  18. F. Daerden and D. Lefeber (2001) The concept and design of pleated pneumatic artificial muscles. International Journal of Fluid Power, 2(3):41–50.

    Google Scholar 

  19. C-P. Chou and B. Hannaford (1996) Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Transactions on Robotics and Automation, 12:90–102.

    CrossRef  Google Scholar 

  20. F. Daerden and D. Lefeber (2002) Pneumatic artificial muscles: actuators for robotics and automation. European Journal of Mechanical and Environmental Engineering, 47(1):10–21.

    Google Scholar 

  21. G.K. Klute and B. Hannaford (2000) Accounting for elastic energy storage in McKibben artificial muscle actuators. ASME Journal of Dynamic Systems, Measurement, and Control, 122(2):386–388.

    CrossRef  Google Scholar 

  22. A. Aviram (1978) Mechanophotochemistry. Macromolecules, 11(6):1275–1280.

    CrossRef  Google Scholar 

  23. A. Suzuki and T. Tanaka (1990) Phase transition in polymer gels induced by visible light. Nature, 346:345–347.

    CrossRef  Google Scholar 

  24. S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa (2000) Reversible phase transitions in polymer gels induced by radiation forces. Nature, 408:78–181.

    Google Scholar 

  25. N.C.R. Holme, L. Nikolova, S. Hvilsted, P.H. Rasmussen, R.H. Berg, and P.S. Ramanujam (1999) Optically induced surface relief phenomena in azobenzene polymers. Applied Physics Letters, 74(4):519–521.

    CrossRef  Google Scholar 

  26. M. Zrínyi, L. Barsi, and A. Büki (1996) Deformation of ferrogels induced by nonuniform magnetic fields. Journal of Chemical Physics, 104(21):8750–8756.

    CrossRef  Google Scholar 

  27. P.A. Voltairas, D.I. Fotiadis, and C.V. Massalas (2003) Modeling of hyperelasticity of magnetic field sensitive gels. Journal of Applied Physics, 93(6):3652–3656.

    CrossRef  Google Scholar 

  28. D.K. Jackson, S. B. Leeb, A.H. Mitwalli, P. Narvaez, D. Fusco, and E.C. Lupton Jr (1997) Power electronic drives for magnetically triggered gels. IEEE Transactions on Industrial Electronics, 44(2):217–225.

    CrossRef  Google Scholar 

  29. N. Kato, S. Yamanobe, Y. Sakai, and F. Takahashi (2001) Magnetically activated swelling for thermosensitive gel composed of interpenetrating polymer network constructed with poly(acrylamide) and poly(acrylic acid). Analytical Sciences, 17,supplement:i1125–i1128.

    Google Scholar 

  30. M. Lokander (2004) Performance of Magnetorheological Rubber Materials. Thesis, KTH Fibre and Polymer Technology.

    Google Scholar 

  31. M. Kamachi (2002) Magnetic polymers. Journal of Macromolecular Science Part C-Polymer Reviews, C42(4):541–561.

    CrossRef  Google Scholar 

  32. P.A. Voltairas, D. I. Fotiadis, and L.K. Michalis (2002) Hydrodynamics of magnetic drug targeting. Journal of Biomechanics, 35:813–821.

    CrossRef  Google Scholar 

  33. H. Ichijo, O. Hirasa, R. Kishi, M. Oowada, K. Sahara, E. Kokufuta, and S. Kohno (1995) Thermo-responsive gels. Radiation Physics and Chemistry, 46(2):185–190.

    CrossRef  Google Scholar 

  34. E. T. Carlen, and C. H. Mastrangelo (1999) Simple, high actuation power, thermally activated paraffin microactuator. Transducers’ 99 Conference, Sendai, Japan, June 7–10.

    Google Scholar 

  35. C. Folk, C-M. Ho, X. Chen, and F. Wudl (2003) Hydrogel microvalves with short response time. 226th American Chemical Society National Meeting, New York.

    Google Scholar 

  36. J.D.W. Madden, A. N. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi, R.Z. Pytel, S.R. Lafontaine, P.A. Wieringa, and I.W. Hunter (2004) Artificial muscle technology: Physical principles and naval prospects. IEEE Journal of Oceanic Engineering, 20(3):706–728.

    CrossRef  Google Scholar 

  37. Q.M. Zhang, V. Bharti, and X. Zhao (1998) Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science, 280:2101–2104.

    CrossRef  Google Scholar 

  38. S. Ducharme, S. P. Palto, L. M. Blinov, and V. M. Fridkin (2000) Physics of two-dimensional ferroelectric polymers. Proceedings of the Workshop on First-Principles Calculations for Ferroelectrics, Feb 13–20, Aspen, CO, USA.

    Google Scholar 

  39. G. Kofod (2001) Dielectric Elastomer Actuators. Dissertation, The Technical University of Denmark.

    Google Scholar 

  40. F. Carpi, P. Chiarelli, A. Mazzoldi, and D. de Rossi (2003) Electromechanical characterization of dielectric elastomer planar actuators: Comparative evaluation of different electrode materials and different counterloads. Sensors and Actuators A, 107:85–95.

    CrossRef  Google Scholar 

  41. A. Wingert, M. Lichter, S. Dubowsky, and M. Hafez (2002) Hyper-redundant robot manipulators actuated by optimized binary dielectric polymers. Proceedings of SPIE International Symposium on Smart Structures and Materials, EAPAD

    Google Scholar 

  42. H.R. Choi, K. M. Jung, S.M. Ryew, J.-D. Nam, J.W. Jeon, J.C. Koo, and K. Tanie (2005) Biomimetic soft actuator: Design, modeling, control, and application, IEEE/ASME Transactions on Mechatronics, 10(5): 581–586.

    CrossRef  Google Scholar 

  43. C. Hackl, H-Y Tang, R.D. Lorenz, L-S. Turng, and D. Schroder (2004) A multi-physics model of planar electro-active polymer actuators. Industry Applications Conference, 3:2125–2130

    Google Scholar 

  44. J. Su, J.S. Harrison, and T. St. Clair (2000) Novel polymeric elastomers for actuation. Proceedings of IEEE International Symposium on Application of Ferroelectrics, 2:811–819.

    Google Scholar 

  45. Y. Wang, C. Sun, E. Zhou, and J. Su (2004) Deformation mechanisms of electrostrictive graft elastomer. Smart Materials and Structures, 13:1407–1413.

    CrossRef  Google Scholar 

  46. J. Kim and Y.B. Seo (2002) Electro-active paper actuators. Smart Materials and Structures, 11:355–360.

    CrossRef  Google Scholar 

  47. Y. An and M.T. Shaw (2003) Actuating properties of soft gels with ordered iron particles: Basis for a shear actuator. Smart Materials and Structures, 12:157–163.

    CrossRef  Google Scholar 

  48. D.K. Shenoy, D.L. Thomse III, A. Srinivasan, P. Keller, and B.R. Ratna (2002) Carbon coated liquid crystal elastomer film for artificial muscle applications. Sensors and Actuators A, 96:184–188.

    CrossRef  Google Scholar 

  49. http://www.azom.com/news.asp?newsID=1220

    Google Scholar 

  50. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley (2004) Fast liquid-crystal elastomer swims into the dark. Nature Materials, 3:307–310.

    CrossRef  Google Scholar 

  51. T. Tanaka, I. Nishio, S-T. Sun, and S. Ueno-Nishio (1982) Collapse of gels in an electric field. Science, 218:467–469.

    CrossRef  Google Scholar 

  52. T. Shiga and T. Kurauchi (1990) Deformation of polyelectrolyte gels under the influence of electric field. Journal of Applied Polymer Science, 39:2305–2320.

    CrossRef  Google Scholar 

  53. H. B. Schreyer, G. Nouvelle, K. J. Kim, and M. Shahinpoor (2000) Electrical activation of artificial muscles containing polyacrylonitrile gel fibers. Biomacromolecules, 1:642–647.

    CrossRef  Google Scholar 

  54. K. Oguro, Y. Kawami, and H. Takenaka (1992) Bull. Government Industrial Research Institute Osaka, 43, 21.

    Google Scholar 

  55. K.J. Kim, and M. Shahinpoor (2002) Development of three dimensional ionic polymer-metal composites as artificial muscles, Polymer, 43(3):797–802.

    CrossRef  Google Scholar 

  56. M. Shahinpoor and K.J. Kim (2002) A novel physically-loaded and interlocked electrode developed for ionic polymer-metal composites (IPMCs), Sensors and Actuator: A. Physical, 96:125–132.

    Google Scholar 

  57. R.H. Baughman (1996) Conducting polymer artificial muscles. Synthetic Metals, 78:339–353.

    CrossRef  Google Scholar 

  58. M. Gerard, A. Chaubey, and B.D. Malhotra (2002) Application of conducting polymers to biosensors. Biosensors & Bioelectronics, 17:345–359.

    CrossRef  Google Scholar 

  59. S. Hara, T. Zama, W. Takashima, and K. Kaneto (2005) Free-standing polypyrrole actuators with response rate of 10.8%s−1. Synthetic Metals, 149:199–201.

    CrossRef  Google Scholar 

  60. S. Hara, T. Zama, W. Takashima, and K. Kaneto (2004) Polypyrrole-metal coil composite actuators as artificial muscle fibres. Synthetic Metals, 146:47–55.

    CrossRef  Google Scholar 

  61. J.D. Madden, R. A. Cush, T.S. Kanigan, C.J. Brenan, and I. W. Hunter (1999) Encapsulated polypyrrole actuators. Synthetic Metals, 105:61–64.

    CrossRef  Google Scholar 

  62. A. Bhattacharya, and A. De (1996) Conducting composites of polypyrrole and polyaniline: A review. Progress in Solid State Chemistry, 24:141–181.

    CrossRef  Google Scholar 

  63. R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz (1999) Carbon nanotube actuators. Science, 284:1340–1344.

    CrossRef  Google Scholar 

  64. N. Jalili, B.C. Goswami, A. Rao, and D. Dawson (2004) Functional fabric with embedded nanotube actuators/sensors. National Textile Center Research Briefs — Materials Competency (NTC Project: M03-CL07s).

    Google Scholar 

  65. R.H. Baughman, A.A. Zakhidov, and W.A. de Heer (2002) Carbon nanotubes-the route toward applications. Science, 297:787–792.

    CrossRef  Google Scholar 

  66. J.N. Barisci, G.M. Spinks, G.G. Wallace, J.D. Madden, and R.H. Baughman (2003) Increased actuation rate of electromechanical carbon nanotube actuators using potential pulses with resistance compensation. Smart Materials and Structures, 12:549–555.

    CrossRef  Google Scholar 

  67. G.M. Spinks, G.G. Wallace, L.S. Fifield, L.R. Dalton, A. Mazzoldi, D. De Rossi, I.I. Khayrullin, and R.H. Baughman (2002) Pneumatic carbon nanotube actuators. Advanced Materials, 14(23):1728–1732.

    CrossRef  Google Scholar 

  68. M. Tahhan, V-T Truong, G.M. Spinks, and G.G. Wallace (2003) Carbon nanotube and polyaniline composite actuators. Smart Materials and Structures, 12:626–632.

    CrossRef  Google Scholar 

  69. Y. Hirokawa and T. Tanaka, (1984) Volume phase transitions in a non-ionic gel. Journal of Chemical Physics, 81:6379–6380.

    CrossRef  Google Scholar 

  70. K. Choi, K.J. Kim, D. Kim, C. Manford, and S. Heo (2006) Performance characteristics of electro-chemically driven polyacrylonitrile fiber bundle actuators. Journal of Intelligent Material Systems and Structures (in print).

    Google Scholar 

  71. K.J. Kim and M. Shahinpoor (2002) Development of three dimensional ionic polymer-metal composites as artificial muscles. Polymer, 43(3):797–802.

    CrossRef  Google Scholar 

  72. J. Su, Z. Ounaies, J.S. Harrison, Y. Bar-Cohen, and S. Leary (2000) Electromechanically active polymer blends for actuation. Proceedings of SPIE-Smart Structures and Materials, 3987:140–148.

    Google Scholar 

  73. J. Su, K. Hales, and T.B. Xu (2003) Composition and annealing effects on the response of electrostrictive graft elastomers. Proceedings of SPIE Smart Structures and Materials, 5051:191–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Samatham, R. et al. (2007). Active Polymers: An Overview. In: Kim, K.J., Tadokoro, S. (eds) Electroactive Polymers for Robotic Applications. Springer, London. https://doi.org/10.1007/978-1-84628-372-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-372-7_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-371-0

  • Online ISBN: 978-1-84628-372-7

  • eBook Packages: EngineeringEngineering (R0)