Skip to main content

Robust Optimization in Quality Engineering

  • Reference work entry
Springer Handbook of Engineering Statistics

Part of the book series: Springer Handbooks ((SHB))

  • 8619 Accesses

Abstract

Quality engineers often face the job of identifying process or product design parameters that optimize performance response. The first step is to construct a model, using historical or experimental data, that relates the design parameters to the response measures. The next step is to identify the best design parameters based on the model. Clearly, the model itself is only an approximation of the true relationship between the design parameters and the responses. The advances in optimization theory and computer technology have enabled quality engineers to obtain a good solution more efficiently by taking into account the inherent uncertainty in these empirically based models.

Two widely used techniques for parameter optimization, described with examples in this chapter, are the response surface methodology (RSM) and Taguchi loss function. In both methods, the response model is assumed to be fully correct at each step. In this chapter we show how to enhance both methods by using robust optimization tools that acknowledge the uncertainty in the models to find even better solutions. We develop a family of models from the confidence region of the model parameters and show how to use sophistical optimization techniques to find better design parameters over the entire family of approximate models.

Section 12.1 of the chapter gives an introduction to the design parameter selection problem and motivates the need for robust optimization. Section 12.2 presents the robust optimization approach to address the problem of optimizing empirically based response functions by developing a family of models from the confidence region of the model parameters. In Sect. 12.2 robust optimization is compared to traditional optimization approaches where the empirical model is assumed to be true and the optimization is conducted without considering the uncertainty in the parameter estimates. Simulation is used to make the comparison in the context of response surface methodology, a widely used method to optimize products and processes that is briefly described in the section. Section 12.3 introduces a refined technique, called weighted robust optimization, where more-likely points in the confidence region of the empirically determined parameters are given heavier weight than less-likely points. We show that this method provides even more effective solutions compared to robust optimization without weights. Section 12.4 discusses Taguchiʼs loss function and how to leverage robust optimization methods to obtain better solutions when the loss function is estimated from empirical experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

central composite design

QCQP:

quadratically constrained quadratic programming

RSM:

response surface methodology

SDP:

semidefinite program

SSE:

sum of squared errors

References

  1. G. E. P. Box, W. G. Hunter, J. S. Hunter: Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building (Wiley, New York 1978)

    MATH  Google Scholar 

  2. G. E. P. Box, N. R. Draper: Empirical Model-Building and Response Surfaces (Wiley, New York 1987)

    MATH  Google Scholar 

  3. R. H. Myers, D. C. Montgomery: Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley, New York 1995)

    MATH  Google Scholar 

  4. A. I. Khuri, J. A. Cornell: Response Surfaces: Designs and Analyses (Marcel Dekker, New York 1996)

    MATH  Google Scholar 

  5. G. E. P. Box, K. B. Wilson: On the experimental attainment of optimum conditions, J. R. Stat. Soc. Ser. B 13, 1–45 (1951)

    MathSciNet  Google Scholar 

  6. D. Xu, S. L. Albin: Robust optimization of experimentally derived objective functions, IIE Trans. 35, 793–802 (2003)

    Article  Google Scholar 

  7. C. F. Wu, M. Hamada: Experiments: Planning, Analysis, And Parameter Design Optimization (Wiley, New York 2000)

    MATH  Google Scholar 

  8. E. Erhardt, H. Mai: The search for the optimal paper helicopter, personal communication, (2002) http://www.stat.unm.edu/∼erike/projects/Erhardt_-Erik_rsmproj.pdf

    Google Scholar 

  9. G. E. P. Box, P. Y. T. Liu: Statistics as a catalyst to learning by scientific method, J. Qual. Technol. 31, 1–15 (1999)

    Google Scholar 

  10. K. Shimizu, E. Aiyoshi: Necessary conditions for Min-Max problems and algorithms by a relaxation procedure, IEEE Trans. Autom. Control 25, 62–66 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. R. G. Miller: Simultaneous Statistical Inference (McGraw–Hill, New York 1966)

    MATH  Google Scholar 

  12. R. H. Myers: Classical and Modern Regression with Applications (PWS–Kent, Boston 1990)

    Google Scholar 

  13. D. Xu: Multivariate statistical Modeling and robust optimization in quality engineering, Doctoral Dissertation, Department of Industrial and Systems Engineering, Rutgers University (2001)

    Google Scholar 

  14. L. Vandenberghe, S. Boyd: Semidefinite programming, SIAM Rev. 38, 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Alizadeh, S. Schmieta: Optimization with semidefinite, quadratic and linear constraints, Rutcor Res. Rep., Rutgers University , 23–97 (1997)

    Google Scholar 

  16. E. Frazzoli, Z. H. Mao, J. H. Oh, E. Feron: Resolution of conflicts involving many aircraft via semidefinite programming, MIT Research Report , MIT–ICAT 99–5 (1999)

    Google Scholar 

  17. F. Alizadeh, J. P. Haeberly, M. Nayakkankuppam, M. Overton, S. Schmieta: SDPPACK Userʼs Guide. NYU Computer Science Department Technical Report (1997)

    Google Scholar 

  18. J. Sturm: Using SeDuMi 1.0x, a Matlab toolbox for optimization over symmetric cones, Optim. Methods Softw. 11, 625–663 (1999)

    Article  MathSciNet  Google Scholar 

  19. D. Jones, C. Perttunen, B. Stuckman: Lipschitzian optimization without the Lipschitz constant, J. Opt. Theory Appl. 79, 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Bjorkman, K. Holmstrom: Global optimization using the DIRECT algorithm in Matlab, Adv. Model. Opt. 1, 17–37 (1999)

    Google Scholar 

  21. G. Taguchi: System of Experimental Design (Unipub/Kraus, White Plains 1987)

    Google Scholar 

  22. W. J. Welch, T. K. Yu, S. M. Kang, J. Sacks: Computer experiments for quality control by robust design, J. Qual. Technol. 22, 15–22 (1990)

    Google Scholar 

  23. A. C. Shoemaker, K. L. Tsui, C. F. J. Wu: Economical experimentation methods for robust parameter design, Technometrics 33, 415–428 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susan Albin or Di Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Albin, S., Xu, D. (2006). Robust Optimization in Quality Engineering. In: Pham, H. (eds) Springer Handbook of Engineering Statistics. Springer Handbooks. Springer, London. https://doi.org/10.1007/978-1-84628-288-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-288-1_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-806-0

  • Online ISBN: 978-1-84628-288-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics