Skip to main content

Data Complexity and Evolutionary Learning

  • Chapter
Data Complexity in Pattern Recognition

Summary

We study the behavior of XCS, a classifier based on genetic algorithms. XCS summarizes the state of the art of the evolutionary learning field and benefits from the long experience and research in the area. We describe the XCS learning mechanisms by which a set of rules describing the class boundaries is evolved. We study XCS’s behavior and its relationship to data complexity. We find that the difficult cases for XCS are those with long boundaries, high class interleaving, and high nonlinearities. Comparison with other classifiers in the complexity space enables identifying domains of competence for XCS as well as domains of poor performance. The study lays the basis to further apply the same methodology to analyze the domains of competence of other classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.W. Aha, D. Kibler, M.K. Albert. Instance-based learning algorithms. Machine Learning, 6, 37–66, 1991.

    Google Scholar 

  2. J. Bacardit. Pittsburgh genetic-based machine learning in the data mining era: representations, generalization and run-time. Ph.D. thesis, Enginyeria i Arquitectura La Salle, Ramon Llull University, Barcelona, Spain, 2004.

    Google Scholar 

  3. J. Bacardit, M.V. Butz. Data mining in learning classifier systems: comparing XCS with G Assist. In Seventh International Workshop on Learning Classifier Systems (IWLCS-2004), Seattle, WA, June 26, 2004.

    Google Scholar 

  4. E. Bernadó-Mansilla, J.M. Garrell Guiu. Accuracy-based learning classifier systems: models, analysis and applications to classification tasks. Evolutionary Computation, 11(3), 209–238, 2003.

    Article  Google Scholar 

  5. E. Bernadó-Mansilla, T.K. Ho. Domain of competence of XCS classifier system in complexity measurement space. IEEE Transactions on Evolutionary Computation, 9(1), 82–104, 2005.

    Article  Google Scholar 

  6. E. Bernadó-Mansilla, X. L. Fàbrega, J.M. Garrell Guiu. XCS and GALE: a comparative study of two learning classifier systems on data mining. In P.L. Lanzi, W. Stolzmann, S.W. Wilson, eds. Advances in Learning Classifier Systems, 4th International Workshop, volume 2321 of Lecture Notes in Computer Science, pages 115–132. New York: Springer, 2002.

    Google Scholar 

  7. C.L. Blake, C.J. Merz. UCI Repository of machine learning databases, [http://www.ics.uci.edu/~mlearn/MLRepository.html]. University of California, Irvine, Department of Information and Computer Sciences, 1998.

    Google Scholar 

  8. L. Breiman. Bagging predictors. Machine Learning, 24, 123–140, 1996.

    MathSciNet  Google Scholar 

  9. M.V. Butz, M. Pelikan. Analyzing the Evolutionary Pressures in XCS. In L. Spector, E.D. Goodman, A. Wu, et al., eds. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), pages 935–942. San Francisco: Morgan Kaufmann, 2001.

    Google Scholar 

  10. M.V. Butz. Rule-based evolutionary online learning systems: learning bounds, classification, and prediction. Ph.D. thesis, University of Illinois, 2004.

    Google Scholar 

  11. M.V. Butz, S.W. Wilson. An algorithmic description of XCS. In P.L. Lanzi, W. Stolzmann, S.W. Wilson, eds. Advances in Learning Classifier Systems: Proceedings of the Third International Workshop, volume 1996 of Lecture Notes in Artificial Intelligence, pages 253–272. Berlin, Heidelberg: Springer-Verlag, 2001.

    Google Scholar 

  12. E. Cantú-Paz, C. Kamath. Inducing oblique decision trees with evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 7(1), 54–68, 2003.

    Article  Google Scholar 

  13. K.A. De Jong, W.M. Spears, D.F. Gordon. Using genetic algorithms for concept learning. Genetic Algorithms for Machine Learning (John J. Grefenstette ed.), A Special Issue of Machine Learning, 13,2-3, 161–188, 1993.

    Google Scholar 

  14. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. New York, Addison-Wesley, 1989.

    MATH  Google Scholar 

  15. D.E. Goldberg. The Design of Innovation. Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, 2002.

    Google Scholar 

  16. T.K. Ho. The random subspace method for constructing decision forests. IEEE Transcations on Pattern Analysis and Machine Intelligence, 20(8), 832–844, 1998.

    Article  Google Scholar 

  17. T.K. Ho, M. Basu. Complexity measures of supervised classification problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3), 289–300, 2002.

    Article  Google Scholar 

  18. J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975.

    Google Scholar 

  19. P.L. Lanzi. Extending the representation of classifier conditions. Part I: from binary to messy coding. In W. Banzhaf, J. Daida, A.E. Eiben, et al., eds. Proceedings of the Genetic and Evolutionary Computation Conference, (GECCO-99), pages 337–344. San Francisco: Morgan Kaufmann, 1999.

    Google Scholar 

  20. P.L. Lanzi. Extending the representation of classifier conditions. Part II: from messy coding to S-expressions. In W. Banzhaf, J. Daida, A.E. Eiben, et al., eds. Proceedings of the Genetic and Evolutionary Computation Conference, (GECCO-99), pages 345–352. San Francisco: Morgan Kaufmann, 1999.

    Google Scholar 

  21. X. Llorà, J.M. Garrell Guiu. Co-evolving different knowledge representations with fine-grained parallel learning classifier systems. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2002), pages 934–941. San Francisco: Morgan Kaufmann, 2002.

    Google Scholar 

  22. S. Murthy, S. Kasif, S. Salzberg. A system for induction of oblique decision trees. Journal of Artificial Intelligence Research, 2(1), 1–32, 1994.

    Article  Google Scholar 

  23. J.D. Schaffer. Combinations of genetic algorithms with neural netwoks or fuzzy systems. In J.M. Zurada, R.J. Marks, J. Marks, II, C.J. Robinson, eds. Computational Intelligence Imitating Life, pages 371–382. New York: IEEE Press, 1994.

    Google Scholar 

  24. F.W. Smith. Pattern classifier design by linear programming. IEEE Transactions on Computers, C-17, 367–372, 1968.

    Google Scholar 

  25. C. Stone, L. Bull. For real! XCS with continuous-valued inputs. Evolutionary Computation, 11(3), 299–336, 2003.

    Article  Google Scholar 

  26. S.W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation, 3(2), 149–175, 1995.

    Google Scholar 

  27. S.W. Wilson. Generalization in the XCS classifier system. In J.R. Koza, W. Banzhaf, K. Chellapilla, et al., eds. Genetic Programming: Proceedings of the Third Annual Conference. San Francisco: Morgan Kaufmann, 1998.

    Google Scholar 

  28. S.W. Wilson. Get real! XCS with continuous-valued inputs. In L. Booker, S. Forrest, M. Mitchell, R. Riolo, eds. Festschrift in Honor of John H. Holland, pages 111–121. Center for the Study of Complex Systems, University of Michigan, 1999.

    Google Scholar 

  29. X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9), 1423–1447, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Verlag London Limited

About this chapter

Cite this chapter

Bernadó-Mansilla, E., Kam Ho, T., Orriols, A. (2006). Data Complexity and Evolutionary Learning. In: Basu, M., Ho, T.K. (eds) Data Complexity in Pattern Recognition. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-84628-172-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-172-3_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-171-6

  • Online ISBN: 978-1-84628-172-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics