The Musculoskeletal System and Skin

  • Chirukandath Gopinath
  • Vasanthi Mowat


Induced lesions of the musculoskeletal system, skin, and adipose tissue have been identified with an increasing variety of test articles over the past two decades, including many biologics. The pathogenesis of these lesions is now being studied more intensively than in the past. In this chapter, mechanisms of toxicity are briefly discussed. Common induced lesions of these organ systems are described, with illustrations and examples of causative agents and their modes of action.


Growth Hormone Articular Cartilage Satellite Cell Growth Plate Metalloproteinase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Valentine BA, Hermanson JW. Pathology methods in nonclinical neurotoxicity studies: evaluation of muscle. In: Bolon B, Butt MT, editors. Fundamental neuropathology for pathologists and toxicologists. Hoboken: John Wiley and Sons; 2011. p. 239–52.CrossRefGoogle Scholar
  2. 2.
    Alleva FR, Haberman BH, Slaughter LJ, Balazs T. Muscular degeneration in rats after postnatal treatment with 6-mercaptopurine. Drug Chem Toxicol. 1981;4:133–46.PubMedCrossRefGoogle Scholar
  3. 3.
    Alleva FR, Slaughter LJ, Abraham AA, Balazs T. Further studies on 6-mercaptopurine-induced muscle atrophy in rats, mice, and hamsters treated as neonates. Pediatr Pharmacol (New York). 1984;4:39–48.Google Scholar
  4. 4.
    Alleva FR, Slaughter LJ, Abraham AA, Balazs T. Toxicological studies with 6-mercaptopurine in neonates. Toxicol Ind Health. 1986;2:11–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Westwood FR, Bigley A, Randall K, Marsden AM, Scott RC. Statin-induced muscle necrosis in the rat: distribution, development, and fibre selectivity. Toxicol Pathol. 2005;33:246–57.PubMedCrossRefGoogle Scholar
  6. 6.
    Westwood FR, Scott RC, Marsden AM, Bigley A, Randall K. Rosuvastatin: characterization of induced myopathy in the rat. Toxicol Pathol. 2008;36:345–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Pettersen JC, Pruimboom-Brees I, Francone OL, Amacher DE, Boldt SE, Kerlin RL, et al. The PPAR alpha agonists fenofibrate and CP-778875 cause increased beta oxidation, leading to oxidative injury in skeletal and cardiac muscle in the rat. Toxicol Pathol. 2012;40:435–47.PubMedCrossRefGoogle Scholar
  8. 8.
    Teravainen H, Larsen A, Hillbom M. Clofibrate-induced myopathy in the rat. Acta Neuropathol. 1997;39:135–8.CrossRefGoogle Scholar
  9. 9.
    Okada M, Inoue Y, Ube M, Sano F, Ikeda I, Sugimoto J, et al. Skeletal muscle susceptibility to clofibrate induction of lesions in rats. Toxicol Pathol. 2007;35:517–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Okada M, Sano F, Ikeda I, Sugimoto J, Takagi S, Sakai H, et al. Fenofibrate-induced muscular toxicity is associated with a metabolic shift limited to type-1 muscles in rats. Toxicol Pathol. 2009;37:517–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Clarke JT, Karpati G, Carpenter S, Wolfe LS. The effect of vincristine on skeletal muscle in the rat. A correlative histochemical, ultrastructural and chemical study. J Neuropathol Exp Neurol. 1972;31:247–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Karpati G, Carpenter S, Clarke JT, Wolfe LS. Experimental vincristine myopathy—a histochemical, ultrastructural and biochemical study. J Neuropathol Exp Neurol. 1971;30:137.PubMedGoogle Scholar
  13. 13.
    Haschek WM, Rousseaux CG, Wallig MA. Cardiovascular and skeletal muscle systems; section III. In: Fundamentals of toxicologic pathology. London: Elsevier; 2010. p. 365–76.Google Scholar
  14. 14.
    Doroshow JH, Tallent C, Schechter JE. Ultrastructural features of adriamycin-induced skeletal and cardiac muscle toxicity. Am J Pathol. 1985;118:288–97.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Sims LD, Glastonbury JRW. Skeletal muscle. In: Pathology of the pig. Bendigo: Pig Research and Development Corporation; 1996. p. 284.Google Scholar
  16. 16.
    Velasco W, Finol HJ, Marquez A. Toxic and neurogenic factors in chloroquine myopathy fibre selectivity. J Submicrosc Cytol Pathol. 1995;27:451–7.PubMedGoogle Scholar
  17. 17.
    Greaves P. Musculoskeletal system. In: Histopathology of preclinical safety studies. Philadelphia: Elsevier; 2012. p. 157–206.CrossRefGoogle Scholar
  18. 18.
    Gopinath C, Prentice DE, Lewis DJ. The musculoskeletal system and skin. In: Atlas of experimental toxicological pathology. Lancaster/Boston: MTP Press; 1987. p. 156–66.CrossRefGoogle Scholar
  19. 19.
    Krinke G, Schaumburg HH, Spencer PS, Thomann P, Hess R. Clioquinol and 2,5-hexanedione induce different types of distal axonopathy in the dog. Acta Neuropathol. 1979;47:213–21.PubMedCrossRefGoogle Scholar
  20. 20.
    Juntunen J, Teravainen H, Eriksson K, Larsen A, Hillbom M. Peripheral neuropathy and myopathy. An experimental study of rats on alcohol and variable dietary thiamine. Virchows Arch A Pathol Anat Histol. 1979;383:241–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Schuschereba ST, Bowman PD, Vargas JA, Johnson TW, Woo FJ, McKinney L. Myopathic alterations in extraocular muscle of rats subchronically fed pyridostigmine bromide. Toxicol Pathol. 1990;18:387–95.PubMedCrossRefGoogle Scholar
  22. 22.
    Beermann DH, Liboff M, Wilson DB, Hood LF. Effects of exogenous thyroxine and growth hormone on satellite cell and myonuclei populations in rapidly growing rat skeletal muscle. Growth. 1983;47:426–36.PubMedGoogle Scholar
  23. 23.
    Montgomery CA. Muscle diseases. In: Benirschke K, Garner FM, Jones TC, editors. Pathology of laboratory animals. New York: Springer; 2013. p. 821–87.Google Scholar
  24. 24.
    Adolfsson J. Time dependence of dipyridamole-induced increase in skeletal muscle capillarization. Arzneimittelforschung. 1986;36:1768–9.PubMedGoogle Scholar
  25. 25.
    Grasedyck K. D-penicillamine—side effects, pathogenesis and decreasing the risks. Z Rheumatol. 1998;47 Suppl 1:17–9.Google Scholar
  26. 26.
    Laskowski MB, Dettbarn WD. The pharmacology of experimental myopathies. Annu Rev Pharmacol Toxicol. 1977;17:387–409.PubMedCrossRefGoogle Scholar
  27. 27.
    Mastaglia FL. Adverse effects of drugs on muscle. Drugs. 1982;24:304–21.PubMedCrossRefGoogle Scholar
  28. 28.
    Kirkpatrick CJ, Alves A, Kohler H, Kriegsmann J, Bittinger F, Otto M, et al. Biomaterial-induced sarcoma: a novel model to study preneoplastic change. Am J Pathol. 2000;156:1455–67.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Maenza RM, Pradhan AM, Sunderman Jr FW. Rapid induction of sarcomas in rats by combination of nickel sulfide and 3,4-benzpyrene. Cancer Res. 1971;31:2067–71.PubMedGoogle Scholar
  30. 30.
    Haschek WM, Rousseaux CG, Wallig MA. Bones and joints. San Diego: Elsevier; 2010. p. 411–50.Google Scholar
  31. 31.
    Patyna S, Arrigoni C, Terron A, Kim TW, Heward JK, Vonderfecht SL, et al. Nonclinical safety evaluation of sunitinib: a potent inhibitor of VEGF, PDGF, KIT, FLT3, and RET receptors. Toxicol Pathol. 2008;36:905–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Renkiewicz R, Qiu L, Lesch C, Sun X, Devalaraja R, Cody T, et al. Broad-spectrum matrix metalloproteinase inhibitor marimastat-induced musculoskeletal side effects in rats. Arthritis Rheum. 2003;48:1742–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Hall AP, Westwood FR, Wadsworth PF. Review of the effects of anti-angiogenic compounds on the epiphyseal growth plate. Toxicol Pathol. 2006;34:131–47.PubMedCrossRefGoogle Scholar
  34. 34.
    Frazier K, Thomas R, Scicchitano M, Mirabile R, Boyce R, Zimmerman D, et al. Inhibition of ALK5 signaling induces physeal dysplasia in rats. Toxicol Pathol. 2007;35:284–95.PubMedCrossRefGoogle Scholar
  35. 35.
    Price PA, Williamson MK, Haba T, Dell RB, Jee WS. Excessive mineralization with growth plate closure in rats on chronic warfarin treatment. Proc Natl Acad Sci U S A. 1982;79:7734–8.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Takahashi M, Yoshida M, Inoue K, Morikawa T, Nishikawa A. Age-related susceptibility to induction of osteochondral and vascular lesions by semicarbazide hydrochloride in rats. Toxicol Pathol. 2010;38:598–605.PubMedCrossRefGoogle Scholar
  37. 37.
    Brechbiel JL, Ng JM, Curran T. PTHrP treatment fails to rescue bone defects caused by Hedgehog pathway inhibition in young mice. Toxicol Pathol. 2011;39:478–85.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Yabe K, Satoh H, Ishii Y, Jindo T, Sugawara T, Furuhama K, et al. Early pathophysiologic feature of arthropathy in juvenile dogs induced by ofloxacin, a quinolone antimicrobial agent. Vet Pathol Online. 2004;41:673–81.CrossRefGoogle Scholar
  39. 39.
    Kashida Y, Kato M. Toxic effects of quinolone antibacterial agents on the musculoskeletal system in juvenile rats. Toxicol Pathol. 1997;25:635–43.PubMedCrossRefGoogle Scholar
  40. 40.
    Kawahara T, Shimokawa I, Tomita M, Hirano T, Shindo H. Effects of caloric restriction on development of the proximal growth plate and metaphysis of the caput femoris in spontaneously hypertensive rats: microscopic and computer-assisted image analyses. Microsc Res Tech. 2002;59:306–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang LH, Fu Y, Shi YX, Wang WG. T-2 toxin induces degenerative articular changes in rodents: link to Kaschin-Beck disease. Toxicol Pathol. 2011;39:502–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Lewis DN, Nyska A, Johnson K, Malarkey DE, Ward S, Streicker M, et al. 2-Butoxyethanol female-rat model of hemolysis and disseminated thrombosis: X-ray characterization of osteonecrosis and growth-plate suppression. Toxicol Pathol. 2005;33:272–82.PubMedGoogle Scholar
  43. 43.
    Kantner I, Erben RG. Long-term parenteral administration of 2-hydroxypropyl-beta-cyclodextrin causes bone loss. Toxicol Pathol. 2012;40:742–50.PubMedCrossRefGoogle Scholar
  44. 44.
    Highman B, Roth SI, Greenman DL. Osseous changes and osteosarcomas in mice continuously fed diets containing diethylstilbestrol or 17 beta-estradiol. J Natl Cancer Inst. 1981;67:653–62.PubMedGoogle Scholar
  45. 45.
    Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL, Sato M. Bone neoplasms in F344 rats given teriparatide [rhPTH(1–34)] are dependent on duration of treatment and dose. Toxicol Pathol. 2004;32:426–38.PubMedCrossRefGoogle Scholar
  46. 46.
    Jolette J, Wilker CE, Smith SY, Doyle N, Hardisty JF, Metcalfe AJ, et al. Defining a noncarcinogenic dose of recombinant human parathyroid hormone 1–84 in a 2-year study in Fischer 344 rats. Toxicol Pathol. 2006;34:929–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Westwood R, Scott RC, Somers RL, Coulson M, Maciewicz RA. Characterization of fibrodysplasia in the dog following inhibition of metalloproteinases. Toxicol Pathol. 2009;37:860–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Alspaugh MA, Van Hoosier GLJ. Naturally-occurring and experimentally-induced arthritides in rodents: a review of the literature. Lab Anim Sci. 1973;23:722–42.PubMedGoogle Scholar
  49. 49.
    Kashida Y, Kato M. Characterization of fluoroquinolone-induced Achilles tendon toxicity in rats: comparison of toxicities of 10 fluoroquinolones and effects of anti-inflammatory compounds. Antimicrob Agents Chemother. 1997;41:2389–93.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Kato M, Takada S, Kashida Y, Nomura M. Histological examination on Achilles tendon lesions induced by quinolone antibacterial agents in juvenile rats. Toxicol Pathol. 1995;23:385–92.PubMedCrossRefGoogle Scholar
  51. 51.
    Tkalcevic VI, Cuzic S, Brajsa K, Mildner B, Bokulic A, Situm K, et al. Enhancement by PL 14736 of granulation and collagen organization in healing wounds and the potential role of egr-1 expression 2. Eur J Pharmacol. 2007;570:212–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Tkalcevic VI, Cuzic S, Parnham MJ, Pasalic I, Brajsa K. Differential evaluation of excisional non-occluded wound healing in db/db mice 1. Toxicol Pathol. 2009;37:183–92.PubMedCrossRefGoogle Scholar
  53. 53.
    National Toxicology Program. NTP toxicology and carcinogenesis studies of technical grade sodium xylenesulfonate (CAS No. 1300-72-7) in F344/N rats and B6C3F1 mice (dermal studies). Natl Toxicol Program Tech Rep Ser. 1998;464:1–272.Google Scholar
  54. 54.
    Wojcinski ZW, Andrews-Jones L, Aibo DI, Dunstan R. Skin. In: Sahota PS, Popp JA, Hardisty JF, Gopinath C, editors. Toxicologic pathology. Boca Raton: CRC Press; 2013. p. 831–93.CrossRefGoogle Scholar
  55. 55.
    Walsh KM, Gough AW. Hypopigmentation in dogs treated with an inhibitor of platelet aggregation. Toxicol Pathol. 1989;17:549–53.PubMedGoogle Scholar
  56. 56.
    Gobello C, Castex G, Broglia G, Corrada Y. Coat colour changes associated with cabergoline administration in bitches. J Small Anim Pract. 2003;44:352–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Funk J, Landes C. Histopathologic findings after treatment with different oxidosqualene cyclase (OSC) inhibitors in hamsters and dogs. Exp Toxicol Pathol. 2005;57:29–38.PubMedCrossRefGoogle Scholar
  58. 58.
    Brown AP, Dunstan RW, Courtney CL, Criswell KA, Graziano MJ. Cutaneous lesions in the rat following administration of an irreversible inhibitor of erbB receptors, including the epidermal growth factor receptor. Toxicol Pathol. 2008;36:410–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Ito K, Handa J, Mori M, Ezura H, Kumagai M, Suzuki A, et al. Toxicity test of bleomycin oil suspension. Chronic toxicity in beagle dogs (author’s translation). Jpn J Antibiot. 1980;33:29–72.PubMedCrossRefGoogle Scholar
  60. 60.
    Szczech GM, Tucker Jr WE. Nail loss and footpad erosions in beagle dogs given BW 134U, a nucleoside analog. Toxicol Pathol. 1985;13:181–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Tucker Jr WE, Krasny HC, de Miranda P, Goldenthal EI, Elion GB, Hajian G, et al. Preclinical toxicology studies with acyclovir: carcinogenicity bioassays and chronic toxicity tests. Fundam Appl Toxicol. 1983;3:579–86.PubMedCrossRefGoogle Scholar
  62. 62.
    Yin YR, Bai L, Wang F. Mechanism of L-arginine-induced sebaceous gland hyperplasia in rats. Di Yi Jun Yi Da Xue Xue Bao. 2005;25:766–8.PubMedGoogle Scholar
  63. 63.
    National Toxicology Program. Toxicology and carcinogenesis studies of oleic acid diethanolamine condensate. Natl Toxicol Program Tech Rep Ser. 1999;481:1–198.Google Scholar
  64. 64.
    Lavergne SN, Danhof RS, Volkman EM, Trepanier LA. Association of drug-serum protein adducts and anti-drug antibodies in dogs with sulphonamide hypersensitivity: a naturally occurring model of idiosyncratic drug toxicity 1. Clin Exp Allergy. 2006;36:907–15.PubMedCrossRefGoogle Scholar
  65. 65.
    Mountz JD, Downs Minor MD, Turner R, Thomas MB, Richards F, Pisko E. Bleomycin-induced cutaneous toxicity in the rat: analysis of histopathology and ultrastructure compared with progressive systemic sclerosis (scleroderma). Br J Dermatol. 1983;108:679–86.PubMedCrossRefGoogle Scholar
  66. 66.
    Armstrong ML, Mathur SN, Sando GN, Megan MB. Lipid metabolism in xanthomatous skin of hypercholesterolemic rabbits. Am J Pathol. 1986;125:339–48.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Scott DW, Wolfe MJ, Smith CA, Lewis RM. The comparative pathology of non-viral bullous skin diseases in domestic animals. Vet Pathol. 1980;17:257–81.PubMedGoogle Scholar
  68. 68.
    Pyrah IT, Kalinowski A, Jackson D, Davies W, Davis S, Aldridge A, et al. Toxicologic lesions associated with two related inhibitors of oxidosqualene cyclase in the dog and mouse. Toxicol Pathol. 2001;29:174–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Lynch D, Svoboda J, Putta S, Hofland HE, Chern WH, Hansen LA. Mouse skin models for carcinogenic hazard identification: utilities and challenges. Toxicol Pathol. 2007;35:853–64.PubMedCrossRefGoogle Scholar
  70. 70.
    Ramot Y, Ben-Eliahu S, Kagan L, Ezov N, Nyska A. Subcutaneous and intraperitoneal lipogranulomas following subcutaneous injection of olive oil in Sprague–Dawley rats. Toxicol Pathol. 2009;37:882–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Westwood FR, Duffy PA, Malpass DA, Jones HB, Topham JC. Disturbance of macrophage and monocyte function in the dog by a thromboxane receptor antagonist: ICI 185,282. Toxicol Pathol. 1995;23:373–84.PubMedCrossRefGoogle Scholar
  72. 72.
    Hardisty JF, Elwell MR, Ernst H, Greaves P, Kolenda-Roberts H, Malarkey DE, Mann PC, Tellier PA. Histopathology of hemangiosarcomas in mice and hamsters and liposarcomas/fibrosarcomas in rats associated with PPAR agonists. Toxicol Pathol. 2007;35:928–41.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Kakiuchi-Kiyota S, Vetro JA, Suzuki S, Varney ML, Han HY, Nascimento M, et al. Effects of the PPAR gamma agonist troglitazone on endothelial cells in vivo and in vitro: differences between human and mouse. Toxicol Appl Pharmacol. 2009;237:83–90.PubMedCrossRefGoogle Scholar
  74. 74.
  75. 75.
    Ohnishi T, Arnold LL, Clark NM, Wisecarver JL, Cohen SM. Comparison of endothelial cell proliferation in normal liver and adipose tissue in B6C3F1 mice, F344 rats, and humans. Toxicol Pathol. 2007;35:904–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Pruimboom-Brees IM, Francone O, Pettersen JC, Kerlin RL, Will Y, Amacher DE, Boucher GG, Morton D. The development of subcutaneous sarcomas in rodents exposed to peroxisome proliferators agonists: hypothetical mechanisms of action and de-risking attitude. Toxicol Pathol. 2012;40:810–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Morgan RW, Elcock M. Artificial implants and soft tissue sarcomas. J Clin Epidemiol. 1995;48:545–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Le CS, Perron-Lepage MF, Burnett R. Subcutaneous microchip-associated tumours in B6C3F1 mice: a retrospective study to attempt to determine their histogenesis. Exp Toxicol Pathol. 2006;57:255–65.CrossRefGoogle Scholar
  79. 79.
    Tillmann T, Kamino K, Dasenbrock C, Ernst H, Kohler M, Morawietz G, et al. Subcutaneous soft tissue tumours at the site of implanted microchips in mice. Exp Toxicol Pathol. 1997;49:197–200.PubMedCrossRefGoogle Scholar
  80. 80.
    Nagase I, Sasaki N, Tsukazaki K, Yoshida T, Morimatsu M, Saito M. Hyperplasia of brown adipose tissue after chronic stimulation of beta 3-adrenergic receptor in rats. Jpn J Vet Res. 1994;42:137–45.PubMedGoogle Scholar
  81. 81.
    Poulet FM, Berardi MR, Halliwell W, Hartman B, Auletta C, Bolte H. Development of hibernomas in rats dosed with phentolamine mesylate during the 24-month carcinogenicity study. Toxicol Pathol. 2004;32:558–66.PubMedCrossRefGoogle Scholar
  82. 82.
    Long GG, Reynolds VL, Dochterman LW, Ryan TE. Neoplastic and non-neoplastic changes in F-344 rats treated with Naveglitazar, a gamma-dominant PPAR alpha/gamma agonist. Toxicol Pathol. 2009;37:741–53.PubMedCrossRefGoogle Scholar
  83. 83.
    Glinghammar B, Berg AL, Bjurstrom S, Stockling K, Blomgren B, Westerberg R, et al. Proliferative and molecular effects of the dual PPAR alpha/gamma agonist tesaglitazar in rat adipose tissues: relevance for induction of fibrosarcoma. Toxicol Pathol. 2011;39:325–36.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chirukandath Gopinath
    • 1
  • Vasanthi Mowat
    • 2
  1. 1.Consultant in Toxicology and PathologyCambridgeshireUK
  2. 2.Huntingdon Life SciencesCambridgeshireUK

Personalised recommendations