Skip to main content

Mechanisms of Fibrosis in IPF

  • Chapter
  • First Online:
Idiopathic Pulmonary Fibrosis

Part of the book series: Respiratory Medicine ((RM,volume 9))

Abstract

Idiopathic pulmonary fibrosis (IPF) is a disorder characterized by progressive destruction of normal lung architecture and replacement with abundant matrix that stiffens the lung and leads to respiratory failure. The pathobiology of IPF is characterized by the presence of alveolar epithelial cell (AEC) injury and apoptosis, which is accompanied by progressive fibrosis. Thus, while inflammatory signaling may still play a role in IPF, the previous paradigm of an inflammation-driven disorder (alveolitis) has been supplanted by the concept of IPF as a disorder of AEC injury accompanied by a non-resolving wound-healing response. AEC injury and apoptosis result in disordered cross talk between the epithelial and mesenchymal compartments via aberrant cell behavior, profibrotic signaling, and loss of inhibitory homeostatic signals. These aberrant signals lead to disruption of the alveolar basement membrane, formation of a provisional matrix, and recruitment of mesenchymal cells to form the fibroblastic focus, which serves as the site of new matrix accumulation in IPF. Myofibroblast differentiation, matrix synthesis and deposition, and tissue remodeling occur in response to transforming growth factor-β(beta) (TGF-β) and other growth factors. This remodeling process yields a stiffened, fibrotic matrix that independently perpetuates the fibrotic process via activation of TGF-β signaling and myofibroblast differentiation.

Despite this mechanistic understanding of the reparative process, the etiology for the lack of resolution in IPF compared to other responses to lung injury remains unknown. While an effective therapy for IPF remains elusive, approaches to therapy have begun to evolve toward targeted therapies directed at putative growth factors, receptors, and enzymes for which robust evidence now exists regarding their mechanistic involvement in matrix remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin P. Wound healing–aiming for perfect skin regeneration. Science. 1997;276(5309):75–81 [Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  2. Beers MF, Morrisey EE. The three R’s of lung health and disease: repair, remodeling, and regeneration. J Clin Invest. 2011;121(6):2065–73 [Research Support, N.I.H., Extramural Review].

    PubMed  CAS  Google Scholar 

  3. Shaw TJ, Martin P. Wound repair at a glance. J Cell Sci. 2009;122(Pt 18):3209–13 [Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  4. West JB, Mathieu-Costello O. Structure, strength, failure, and remodeling of the pulmonary blood-gas barrier. Annu Rev Physiol. 1999;61:543–72.

    PubMed  CAS  Google Scholar 

  5. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195–200 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review].

    PubMed  CAS  Google Scholar 

  6. Kuhn 3rd C, Boldt J, King Jr TE, Crouch E, Vartio T, McDonald JA. An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am Rev Respir Dis. 1989;140(6):1693–703 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  7. Katzenstein AL, Myers JL. Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1301–15.

    PubMed  CAS  Google Scholar 

  8. American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med. 2000;161(2 Pt 1):646–64.

    Google Scholar 

  9. American Thoracic Society, European Respiratory Society. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am J Respir Crit Care Med. 2002;165(2):277–304.

    Google Scholar 

  10. Cool CD, Groshong SD, Rai PR, Henson PM, Stewart JS, Brown KK. Fibroblast foci are not discrete sites of lung injury or repair: the fibroblast reticulum. Am J Respir Crit Care Med. 2006;174(6):654–8 [Comparative Study In Vitro Research Support, N.I.H., Extramural].

    PubMed  Google Scholar 

  11. King Jr TE, Schwarz MI, Brown K, Tooze JA, Colby TV, Waldron Jr JA, et al. Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality. Am J Respir Crit Care Med. 2001;164(6):1025–32 [Comparative Study Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  12. Nicholson AG, Fulford LG, Colby TV, du Bois RM, Hansell DM, Wells AU. The relationship between individual histologic features and disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2002;166(2):173–7.

    PubMed  Google Scholar 

  13. Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 2007;117(3):524–9.

    PubMed  CAS  Google Scholar 

  14. Keogh BA, Crystal RG. Alveolitis: the key to the interstitial lung disorders. Thorax. 1982;37(1):1–10.

    PubMed  CAS  Google Scholar 

  15. Crystal RG, Bitterman PB, Rennard SI, Hance AJ, Keogh BA. Interstitial lung diseases of unknown cause. Disorders characterized by chronic inflammation of the lower respiratory tract (first of two parts). N Engl J Med. 1984;310(3):154–66.

    PubMed  CAS  Google Scholar 

  16. Raghu G, Anstrom KJ, King Jr TE, Lasky JA, Martinez FJ. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med. 2012;366(21):1968–77 [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  17. Davies HR, Richeldi L, Walters EH. Immunomodulatory agents for idiopathic pulmonary fibrosis. Cochrane Database Syst Rev. 2003;(3):CD003134.

    Google Scholar 

  18. Richeldi L, Davies HR, Ferrara G, Franco F. Corticosteroids for idiopathic pulmonary fibrosis. Cochrane Database Syst Rev. 2003;(3):CD002880.

    Google Scholar 

  19. Thannickal VJ, Toews GB, White ES, Lynch 3rd JP, Martinez FJ. Mechanisms of pulmonary fibrosis. Annu Rev Med. 2004;55:395–417.

    PubMed  CAS  Google Scholar 

  20. Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 2001;134(2):136–51 [Consensus Development Conference Review].

    PubMed  CAS  Google Scholar 

  21. Daley WP, Peters SB, Larsen M. Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci. 2008;121(Pt 3):255–64.

    PubMed  CAS  Google Scholar 

  22. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3(12):Pii: a005058 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Google Scholar 

  23. Clark RA. Fibrin and wound healing. Ann N Y Acad Sci. 2001;936:355–67 [Research Support, U.S. Gov’t, P.H.S. Review].

    PubMed  CAS  Google Scholar 

  24. Zoz DF, Lawson WE, Blackwell TS. Idiopathic pulmonary fibrosis: a disorder of epithelial cell dysfunction. Am J Med Sci. 2011;341(6):435–8 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    PubMed  Google Scholar 

  25. Selman M, Pardo A. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers. Proc Am Thorac Soc. 2006;3(4):364–72.

    PubMed  CAS  Google Scholar 

  26. Macneal K, Schwartz DA. The genetic and environmental causes of pulmonary fibrosis. Proc Am Thorac Soc. 2012;9(3):120–5.

    PubMed  CAS  Google Scholar 

  27. Pandit KV, Milosevic J, Kaminski N. MicroRNAs in idiopathic pulmonary fibrosis. Transl Res. 2011;157(4):191–9 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  28. Selman M, Pardo A, Kaminski N. Idiopathic pulmonary fibrosis: aberrant recapitulation of developmental programs? PLoS Med. 2008;5(3):e62 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  29. Mason RJ. Biology of alveolar type II cells. Respirology. 2006;11(Suppl):S12–5 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review].

    PubMed  Google Scholar 

  30. Adamson IY, Bowden DH. The pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Am J Pathol. 1974;77(2):185–97.

    PubMed  CAS  Google Scholar 

  31. Bhaskaran M, Kolliputi N, Wang Y, Gou D, Chintagari NR, Liu L. Trans-differentiation of alveolar epithelial type II cells to type I cells involves autocrine signaling by transforming growth factor beta 1 through the Smad pathway. J Biol Chem. 2007;282(6):3968–76 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  32. Myers JL, Katzenstein AL. Epithelial necrosis and alveolar collapse in the pathogenesis of usual interstitial pneumonia. Chest. 1988;94(6):1309–11.

    PubMed  CAS  Google Scholar 

  33. Barbas-Filho JV, Ferreira MA, Sesso A, Kairalla RA, Carvalho CR, Capelozzi VL. Evidence of type II pneumocyte apoptosis in the pathogenesis of idiopathic pulmonary fibrosis (IFP)/usual interstitial pneumonia (UIP). J Clin Pathol. 2001;54(2):132–8 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  34. Kawanami O, Ferrans VJ, Crystal RG. Structure of alveolar epithelial cells in patients with fibrotic lung disorders. Lab Invest. 1982;46(1):39–53.

    PubMed  CAS  Google Scholar 

  35. Brody AR, Soler P, Basset F, Haschek WM, Witschi H. Epithelial-mesenchymal associations of cells in human pulmonary fibrosis and in BHT-oxygen-induced fibrosis in mice. Exp Lung Res. 1981;2(3):207–20 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  36. Kasper M, Haroske G. Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis. Histol Histopathol. 1996;11(2):463–83 [Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  37. Raghu G, Freudenberger TD, Yang S, Curtis JR, Spada C, Hayes J, et al. High prevalence of abnormal acid gastro-oesophageal reflux in idiopathic pulmonary fibrosis. Eur Respir J. 2006;27(1):136–42.

    PubMed  CAS  Google Scholar 

  38. Tobin RW, Pope 2nd CE, Pellegrini CA, Emond MJ, Sillery J, Raghu G. Increased prevalence of gastroesophageal reflux in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1998;158(6):1804–8.

    PubMed  CAS  Google Scholar 

  39. Raghu G, Meyer KC. Silent gastro-oesophageal reflux and microaspiration in IPF: mounting evidence for anti-reflux therapy? Eur Respir J. 2012;39(2):242–5.

    PubMed  CAS  Google Scholar 

  40. Lee JS, Ryu JH, Elicker BM, Lydell CP, Jones KD, Wolters PJ, et al. Gastroesophageal reflux therapy is associated with longer survival in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184(12):1390–4 [Research Support, N.I.H., Extramural].

    PubMed  Google Scholar 

  41. Oh CK, Murray LA, Molfino NA. Smoking and idiopathic pulmonary fibrosis. Pulm Med. 2012;2012:808260.

    PubMed  Google Scholar 

  42. Baumgartner KB, Samet JM, Stidley CA, Colby TV, Waldron JA. Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1997;155(1):242–8 [Multicenter Study Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  43. Steele MP, Speer MC, Loyd JE, Brown KK, Herron A, Slifer SH, et al. Clinical and pathologic features of familial interstitial pneumonia. Am J Respir Crit Care Med. 2005;172(9):1146–52 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.].

    PubMed  Google Scholar 

  44. Taskar VS, Coultas DB. Is idiopathic pulmonary fibrosis an environmental disease? Proc Am Thorac Soc. 2006;3(4):293–8.

    PubMed  Google Scholar 

  45. Naik PK, Moore BB. Viral infection and aging as cofactors for the development of pulmonary fibrosis. Expert Rev Respir Med. 2010;4(6):759–71 [Research Support, N.I.H., Extramural Review].

    PubMed  Google Scholar 

  46. Lasithiotaki I, Antoniou KM, Vlahava VM, Karagiannis K, Spandidos DA, Siafakas NM, et al. Detection of herpes simplex virus type-1 in patients with fibrotic lung diseases. PLoS One. 2011;6(12):e27800 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  47. Pulkkinen V, Salmenkivi K, Kinnula VL, Sutinen E, Halme M, Hodgson U, et al. A novel screening method detects herpesviral DNA in the idiopathic pulmonary fibrosis lung. Ann Med. 2012;44(2):178–86 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  48. Tang YW, Johnson JE, Browning PJ, Cruz-Gervis RA, Davis A, Graham BS, et al. Herpesvirus DNA is consistently detected in lungs of patients with idiopathic pulmonary fibrosis. J Clin Microbiol. 2003;41(6):2633–40.

    PubMed  Google Scholar 

  49. Lawson WE, Crossno PF, Polosukhin VV, Roldan J, Cheng DS, Lane KB, et al. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol. 2008;294(6):L1119–26 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  50. Nogee LM, Dunbar 3rd AE, Wert SE, Askin F, Hamvas A, Whitsett JA. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med. 2001;344(8):573–9 [Case Reports Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  51. Thomas AQ, Lane K, Phillips 3rd J, Prince M, Markin C, Speer M, et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am J Respir Crit Care Med. 2002;165(9):1322–8 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  52. Mulugeta S, Maguire JA, Newitt JL, Russo SJ, Kotorashvili A, Beers MF. Misfolded BRICHOS SP-C mutant proteins induce apoptosis via caspase-4- and cytochrome c-related mechanisms. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L720–9 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  53. Mulugeta S, Nguyen V, Russo SJ, Muniswamy M, Beers MF. A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am J Respir Cell Mol Biol. 2005;32(6):521–30 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  54. Glasser SW, Detmer EA, Ikegami M, Na CL, Stahlman MT, Whitsett JA. Pneumonitis and emphysema in sp-C gene targeted mice. J Biol Chem. 2003;278(16):14291–8 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  55. Wang Y, Kuan PJ, Xing C, Cronkhite JT, Torres F, Rosenblatt RL, et al. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Genet. 2009;84(1):52–9 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  56. Tsakiri KD, Cronkhite JT, Kuan PJ, Xing C, Raghu G, Weissler JC, et al. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci USA. 2007;104(18):7552–7 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    PubMed  CAS  Google Scholar 

  57. Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 2007;356(13):1317–26 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  58. Hornsby PJ. Telomerase and the aging process. Exp Gerontol. 2007;42(7):575–81 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  59. Moodley YP, Scaffidi AK, Misso NL, Keerthisingam C, McAnulty RJ, Laurent GJ, et al. Fibroblasts isolated from normal lungs and those with idiopathic pulmonary fibrosis differ in interleukin-6/gp130-mediated cell signaling and proliferation. Am J Pathol. 2003;163(1):345–54 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  60. Diaz de Leon A, Cronkhite JT, Katzenstein AL, Godwin JD, Raghu G, Glazer CS, et al. Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations. PLoS One. 2010;5(5):e10680 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  61. Cronkhite JT, Xing C, Raghu G, Chin KM, Torres F, Rosenblatt RL, et al. Telomere shortening in familial and sporadic pulmonary fibrosis. Am J Respir Crit Care Med. 2008;178(7):729–37 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  62. Alder JK, Chen JJ, Lancaster L, Danoff S, Su SC, Cogan JD, et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci USA. 2008;105(35):13051–6 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  63. Moeller A, Gilpin SE, Ask K, Cox G, Cook D, Gauldie J, et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179(7):588–94 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  64. Pulkkinen V, Bruce S, Rintahaka J, Hodgson U, Laitinen T, Alenius H, et al. ELMOD2, a candidate gene for idiopathic pulmonary fibrosis, regulates antiviral responses. FASEB J. 2010;24(4):1167–77 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  65. Hodgson U, Pulkkinen V, Dixon M, Peyrard-Janvid M, Rehn M, Lahermo P, et al. ELMOD2 is a candidate gene for familial idiopathic pulmonary fibrosis. Am J Hum Genet. 2006;79(1):149–54 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  66. Seibold MA, Wise AL, Speer MC, Steele MP, Brown KK, Loyd JE, et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med. 2011;364(16):1503–12 [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  67. Zhang Y, Noth I, Garcia JG, Kaminski N. A variant in the promoter of MUC5B and idiopathic pulmonary fibrosis. N Engl J Med. 2011;364(16):1576–7 [Letter Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  68. Korfei M, Ruppert C, Mahavadi P, Henneke I, Markart P, Koch M, et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2008;178(8):838–46 [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  69. Naidoo N. The endoplasmic reticulum stress response and aging. Rev Neurosci. 2009;20(1):23–37.

    PubMed  CAS  Google Scholar 

  70. Sisson TH, Mendez M, Choi K, Subbotina N, Courey A, Cunningham A, et al. Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med. 2010;181(3):254–63 [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    PubMed  CAS  Google Scholar 

  71. Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res. 2001;2(1):33–46 [Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  72. Sirianni FE, Chu FS, Walker DC. Human alveolar wall fibroblasts directly link epithelial type 2 cells to capillary endothelium. Am J Respir Crit Care Med. 2003;168(12):1532–7 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  73. Portnoy J, Pan T, Dinarello CA, Shannon JM, Westcott JY, Zhang L, et al. Alveolar type II cells inhibit fibroblast proliferation: role of IL-1alpha. Am J Physiol Lung Cell Mol Physiol. 2006;290(2):L307–16 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  74. Chauncey JB, Peters-Golden M, Simon RH. Arachidonic acid metabolism by rat alveolar epithelial cells. Lab Invest. 1988;58(2):133–40 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  75. Lipchik RJ, Chauncey JB, Paine R, Simon RH, Peters-Golden M. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro. Am J Physiol. 1990;259(2 Pt 1):L73–80.

    PubMed  CAS  Google Scholar 

  76. Lama V, Moore BB, Christensen P, Toews GB, Peters-Golden M. Prostaglandin E2 synthesis and suppression of fibroblast proliferation by alveolar epithelial cells is cyclooxygenase-2-dependent. Am J Respir Cell Mol Biol. 2002;27(6):752–8 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  77. Bitterman PB, Wewers MD, Rennard SI, Adelberg S, Crystal RG. Modulation of alveolar macrophage-driven fibroblast proliferation by alternative macrophage mediators. J Clin Invest. 1986;77(3):700–8.

    PubMed  CAS  Google Scholar 

  78. Kohyama T, Ertl RF, Valenti V, Spurzem J, Kawamoto M, Nakamura Y, et al. Prostaglandin E(2) inhibits fibroblast chemotaxis. Am J Physiol Lung Cell Mol Physiol. 2001;281(5):L1257–63 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  79. Korn JH, Halushka PV, LeRoy EC. Mononuclear cell modulation of connective tissue function: suppression of fibroblast growth by stimulation of endogenous prostaglandin production. J Clin Invest. 1980;65(2):543–54 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  80. Goldstein RH, Polgar P. The effect and interaction of bradykinin and prostaglandins on protein and collagen production by lung fibroblasts. J Biol Chem. 1982;257(15):8630–3 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  81. Borok Z, Gillissen A, Buhl R, Hoyt RF, Hubbard RC, Ozaki T, et al. Augmentation of functional prostaglandin E levels on the respiratory epithelial surface by aerosol administration of prostaglandin E. Am Rev Respir Dis. 1991;144(5):1080–4 [Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  82. Huang SK, Wettlaufer SH, Hogaboam CM, Flaherty KR, Martinez FJ, Myers JL, et al. Variable prostaglandin E2 resistance in fibroblasts from patients with usual interstitial pneumonia. Am J Respir Crit Care Med. 2008;177(1):66–74 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  83. Adamson IY, Young L, Bowden DH. Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis. Am J Pathol. 1988;130(2):377–83 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  84. Perl AK, Riethmacher D, Whitsett JA. Conditional depletion of airway progenitor cells induces peribronchiolar fibrosis. Am J Respir Crit Care Med. 2011;183(4):511–21 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  85. Chilosi M, Poletti V, Murer B, Lestani M, Cancellieri A, Montagna L, et al. Abnormal re-epithelialization and lung remodeling in idiopathic pulmonary fibrosis: the role of deltaN-p63. Lab Invest. 2002;82(10):1335–45 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  86. Fehrenbach H, Kasper M, Tschernig T, Shearman MS, Schuh D, Muller M. Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell Mol Biol (Noisy-le-Grand). 1998;44(7):1147–57 [Research Support, Non-U.S. Gov’t].

    CAS  Google Scholar 

  87. Demling N, Ehrhardt C, Kasper M, Laue M, Knels L, Rieber EP. Promotion of cell adherence and spreading: a novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells. Cell Tissue Res. 2006;323(3):475–88.

    PubMed  CAS  Google Scholar 

  88. Queisser MA, Kouri FM, Konigshoff M, Wygrecka M, Schubert U, Eickelberg O, et al. Loss of RAGE in pulmonary fibrosis: molecular relations to functional changes in pulmonary cell types. Am J Respir Cell Mol Biol. 2008;39(3):337–45 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  89. Englert JM, Hanford LE, Kaminski N, Tobolewski JM, Tan RJ, Fattman CL, et al. A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Am J Pathol. 2008;172(3):583–91 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  90. Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005;24(37):5764–74 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S. Review].

    PubMed  CAS  Google Scholar 

  91. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42 [Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  92. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.

    PubMed  CAS  Google Scholar 

  93. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110(3):341–50 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  94. Rowe RG, Lin Y, Shimizu-Hirota R, Hanada S, Neilson EG, Greenson JK, et al. Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol Cell Biol. 2011;31(12):2392–403 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  95. Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;294(2):L152–60.

    PubMed  CAS  Google Scholar 

  96. Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci USA. 2006;103(35):13180–5 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  97. Tanjore H, Xu XC, Polosukhin VV, Degryse AL, Li B, Han W, et al. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med. 2009;180(7):657–65 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  98. Marmai C, Sutherland RE, Kim KK, Dolganov GM, Fang X, Kim SS, et al. Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2011;301(1):L71–8 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  99. Bridges RS, Kass D, Loh K, Glackin C, Borczuk AC, Greenberg S. Gene expression profiling of pulmonary fibrosis identifies Twist1 as an antiapoptotic molecular "rectifier" of growth factor signaling. Am J Pathol. 2009;175(6):2351–61 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  100. Jayachandran A, Konigshoff M, Yu H, Rupniewska E, Hecker M, Klepetko W, et al. SNAI transcription factors mediate epithelial-mesenchymal transition in lung fibrosis. Thorax. 2009;64(12):1053–61 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  101. Shannon JM, Hyatt BA. Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol. 2004;66:625–45 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.Review].

    PubMed  CAS  Google Scholar 

  102. Cardoso WV. Molecular regulation of lung development. Annu Rev Physiol. 2001;63:471–94 [Research Support, U.S. Gov’t, P.H.S. Review].

    PubMed  CAS  Google Scholar 

  103. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90 [Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  104. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156–72.

    PubMed  CAS  Google Scholar 

  105. Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L525–34 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  106. Kim KK, Wei Y, Szekeres C, Kugler MC, Wolters PJ, Hill ML, et al. Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest. 2009;119(1):213–24 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  107. Masszi A, Fan L, Rosivall L, McCulloch CA, Rotstein OD, Mucsi I, et al. Integrity of cell-cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. Am J Pathol. 2004;165(6):1955–67 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  108. Koli K, Myllarniemi M, Vuorinen K, Salmenkivi K, Ryynanen MJ, Kinnula VL, et al. Bone morphogenetic protein-4 inhibitor gremlin is overexpressed in idiopathic pulmonary fibrosis. Am J Pathol. 2006;169(1):61–71 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  109. Konigshoff M, Eickelberg O. WNT signaling in lung disease: a failure or a regeneration signal? Am J Respir Cell Mol Biol. 2010;42(1):21–31 [Research Support, Non-U.S. Gov’t Review].

    PubMed  Google Scholar 

  110. Mucenski ML, Nation JM, Thitoff AR, Besnard V, Xu Y, Wert SE, et al. Beta-catenin regulates differentiation of respiratory epithelial cells in vivo. Am J Physiol Lung Cell Mol Physiol. 2005;289(6):L971–9 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  111. Selman M, Pardo A, Barrera L, Estrada A, Watson SR, Wilson K, et al. Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis. Am J Respir Crit Care Med. 2006;173(2):188–98 [Clinical Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  112. Zuo F, Kaminski N, Eugui E, Allard J, Yakhini Z, Ben-Dor A, et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci USA. 2002;99(9):6292–7 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  113. Pardo A, Gibson K, Cisneros J, Richards TJ, Yang Y, Becerril C, et al. Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis. PLoS Med. 2005;2(9):e251.

    PubMed  Google Scholar 

  114. Yang IV, Burch LH, Steele MP, Savov JD, Hollingsworth JW, McElvania-Tekippe E, et al. Gene expression profiling of familial and sporadic interstitial pneumonia. Am J Respir Crit Care Med. 2007;175(1):45–54 [Comparative Study Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural].

    PubMed  CAS  Google Scholar 

  115. Chilosi M, Poletti V, Zamo A, Lestani M, Montagna L, Piccoli P, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol. 2003;162(5):1495–502 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  116. Konigshoff M, Balsara N, Pfaff EM, Kramer M, Chrobak I, Seeger W, et al. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One. 2008;3(5):e2142 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  117. Konigshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A, et al. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Invest. 2009;119(4):772–87 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  118. Kapanci Y, Desmouliere A, Pache JC, Redard M, Gabbiani G. Cytoskeletal protein modulation in pulmonary alveolar myofibroblasts during idiopathic pulmonary fibrosis. Possible role of transforming growth factor beta and tumor necrosis factor alpha. Am J Respir Crit Care Med. 1995;152(6 Pt 1):2163–9 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  119. Khalil N, O’Connor RN, Flanders KC, Unruh H. TGF-beta 1, but not TGF-beta 2 or TGF-beta 3, is differentially present in epithelial cells of advanced pulmonary fibrosis: an immunohistochemical study. Am J Respir Cell Mol Biol. 1996;14(2):131–8 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  120. Antoniades HN, Bravo MA, Avila RE, Galanopoulos T, Neville-Golden J, Maxwell M, et al. Platelet-derived growth factor in idiopathic pulmonary fibrosis. J Clin Invest. 1990;86(4):1055–64 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  121. Antoniades HN, Neville-Golden J, Galanopoulos T, Kradin RL, Valente AJ, Graves DT. Expression of monocyte chemoattractant protein 1 mRNA in human idiopathic pulmonary fibrosis. Proc Natl Acad Sci USA. 1992;89(12):5371–5 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  122. Pan LH, Yamauchi K, Uzuki M, Nakanishi T, Takigawa M, Inoue H, et al. Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF. Eur Respir J. 2001;17(6):1220–7 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  123. Giaid A, Michel RP, Stewart DJ, Sheppard M, Corrin B, Hamid Q. Expression of endothelin-1 in lungs of patients with cryptogenic fibrosing alveolitis. Lancet. 1993;341(8860):1550–4 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  124. Nash JR, McLaughlin PJ, Butcher D, Corrin B. Expression of tumour necrosis factor-alpha in cryptogenic fibrosing alveolitis. Histopathology. 1993;22(4):343–7.

    PubMed  CAS  Google Scholar 

  125. Piguet PF, Ribaux C, Karpuz V, Grau GE, Kapanci Y. Expression and localization of tumor necrosis factor-alpha and its mRNA in idiopathic pulmonary fibrosis. Am J Pathol. 1993;143(3):651–5 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  126. Dancer RC, Wood AM, Thickett DR. Metalloproteinases in idiopathic pulmonary fibrosis. Eur Respir J. 2011;38(6):1461–7.

    PubMed  CAS  Google Scholar 

  127. Corrin B, Dewar A, Rodriguez-Roisin R, Turner-Warwick M. Fine structural changes in cryptogenic fibrosing alveolitis and asbestosis. J Pathol. 1985;147(2):107–19.

    PubMed  CAS  Google Scholar 

  128. Mogulkoc N, Brutsche MH, Bishop PW, Murby B, Greaves MS, Horrocks AW, et al. Pulmonary (99m)Tc-DTPA aerosol clearance and survival in usual interstitial pneumonia (UIP). Thorax. 2001;56(12):916–23.

    PubMed  CAS  Google Scholar 

  129. McKeown S, Richter AG, O’Kane C, McAuley DF, Thickett DR. MMP expression and abnormal lung permeability are important determinants of outcome in IPF. Eur Respir J. 2009;33(1):77–84 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  130. Basset F, Ferrans VJ, Soler P, Takemura T, Fukuda Y, Crystal RG. Intraluminal fibrosis in interstitial lung disorders. Am J Pathol. 1986;122(3):443–61.

    PubMed  CAS  Google Scholar 

  131. Gross TJ, Simon RH, Sitrin RG. Tissue factor procoagulant expression by rat alveolar epithelial cells. Am J Respir Cell Mol Biol. 1992;6(4):397–403 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  132. Kotani I, Sato A, Hayakawa H, Urano T, Takada Y, Takada A. Increased procoagulant and antifibrinolytic activities in the lungs with idiopathic pulmonary fibrosis. Thromb Res. 1995;77(6):493–504.

    PubMed  CAS  Google Scholar 

  133. Chambers RC, Scotton CJ. Coagulation cascade proteinases in lung injury and fibrosis. Proc Am Thorac Soc. 2012;9(3):96–101.

    PubMed  CAS  Google Scholar 

  134. Chapman HA. Disorders of lung matrix remodeling. J Clin Invest. 2004;113(2):148–57 [Research Support, U.S. Gov’t, P.H.S. Review].

    PubMed  CAS  Google Scholar 

  135. Marshall BC, Brown BR, Rothstein MA, Rao NV, Hoidal JR, Rodgers GM. Alveolar epithelial cells express both plasminogen activator and tissue factor. Potential role in repair of lung injury. Chest. 1991;99(3 Suppl):25S–7 [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  136. Imokawa S, Sato A, Hayakawa H, Kotani M, Urano T, Takada A. Tissue factor expression and fibrin deposition in the lungs of patients with idiopathic pulmonary fibrosis and systemic sclerosis. Am J Respir Crit Care Med. 1997;156(2 Pt 1):631–6.

    PubMed  CAS  Google Scholar 

  137. Gunther A, Mosavi P, Ruppert C, Heinemann S, Temmesfeld B, Velcovsky HG, et al. Enhanced tissue factor pathway activity and fibrin turnover in the alveolar compartment of patients with interstitial lung disease. Thromb Haemost. 2000;83(6):853–60 [Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  138. Fujii M, Hayakawa H, Urano T, Sato A, Chida K, Nakamura H, et al. Relevance of tissue factor and tissue factor pathway inhibitor for hypercoagulable state in the lungs of patients with idiopathic pulmonary fibrosis. Thromb Res. 2000;99(2):111–7.

    PubMed  CAS  Google Scholar 

  139. Grainger DJ, Wakefield L, Bethell HW, Farndale RW, Metcalfe JC. Release and activation of platelet latent TGF-beta in blood clots during dissolution with plasmin. Nat Med. 1995;1(9):932–7 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  140. Eitzman DT, McCoy RD, Zheng X, Fay WP, Shen T, Ginsburg D, et al. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest. 1996;97(1):232–7 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  141. Howell DC, Johns RH, Lasky JA, Shan B, Scotton CJ, Laurent GJ, et al. Absence of proteinase-activated receptor-1 signaling affords protection from bleomycin-induced lung inflammation and fibrosis. Am J Pathol. 2005;166(5):1353–65 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  142. Scotton CJ, Krupiczojc MA, Konigshoff M, Mercer PF, Lee YC, Kaminski N, et al. Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J Clin Invest. 2009;119(9):2550–63 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  143. Wygrecka M, Kwapiszewska G, Jablonska E, von Gerlach S, Henneke I, Zakrzewicz D, et al. Role of protease-activated receptor-2 in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(12):1703–14 [In Vitro Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  144. Noth I, Anstrom KJ, Calvert SB, de Andrade J, Flaherty KR, Glazer C, et al. A Placebo-controlled randomized trial of warfarin in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;186(1):88–95.

    PubMed  CAS  Google Scholar 

  145. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast. one function, multiple origins. Am J Pathol. 2007;170(6):1807–16.

    PubMed  CAS  Google Scholar 

  146. Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol. 1998;142(3):873–81.

    PubMed  CAS  Google Scholar 

  147. Kapanci Y, Ribaux C, Chaponnier C, Gabbiani G. Cytoskeletal features of alveolar myofibroblasts and pericytes in normal human and rat lung. J Histochem Cytochem. 1992;40(12):1955–63 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  148. Darby I, Skalli O, Gabbiani G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest. 1990;63(1):21–9.

    PubMed  CAS  Google Scholar 

  149. Ehrlich HP, Desmouliere A, Diegelmann RF, Cohen IK, Compton CC, Garner WL, et al. Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol. 1994;145(1):105–13.

    PubMed  CAS  Google Scholar 

  150. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003;200(4):500–3.

    PubMed  CAS  Google Scholar 

  151. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts I. Paracrine cells important in health and disease. Am J Physiol. 1999;277(1 Pt 1):C1–9.

    PubMed  CAS  Google Scholar 

  152. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012;180(4):1340–55 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  153. Kuhn C, McDonald JA. The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol. 1991;138(5):1257–65.

    PubMed  CAS  Google Scholar 

  154. Phan SH. Genesis of the myofibroblast in lung injury and fibrosis. Proc Am Thorac Soc. 2012;9(3):148–52.

    PubMed  CAS  Google Scholar 

  155. Strieter RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol. 2009;86(5):1111–8 [Research Support, N.I.H., Extramural Review].

    PubMed  CAS  Google Scholar 

  156. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1(1):71–81 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  157. Ebihara Y, Masuya M, Larue AC, Fleming PA, Visconti RP, Minamiguchi H, et al. Hematopoietic origins of fibroblasts: II. In vitro studies of fibroblasts, CFU-F, and fibrocytes. Exp Hematol. 2006;34(2):219–29 [In Vitro Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.].

    PubMed  CAS  Google Scholar 

  158. Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest. 2004;113(2):243–52 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  159. Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest. 2004;114(3):438–46 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  160. Epperly MW, Guo H, Gretton JE, Greenberger JS. Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. Am J Respir Cell Mol Biol. 2003;29(2):213–24 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  161. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176(1):85–97 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.].

    PubMed  CAS  Google Scholar 

  162. Yokota T, Kawakami Y, Nagai Y, Ma JX, Tsai JY, Kincade PW, et al. Bone marrow lacks a transplantable progenitor for smooth muscle type alpha-actin-expressing cells. Stem Cells. 2006;24(1):13–22 [Research Support, N.I.H., Extramural].

    PubMed  Google Scholar 

  163. Strieter RM. Pathogenesis and natural history of usual interstitial pneumonia: the whole story or the last chapter of a long novel. Chest. 2005;128(5 Suppl 1):526S–32.

    PubMed  Google Scholar 

  164. Mehrad B, Burdick MD, Zisman DA, Keane MP, Belperio JA, Strieter RM. Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease. Biochem Biophys Res Commun. 2007;353(1):104–8 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  165. Andersson-Sjoland A, de Alba CG, Nihlberg K, Becerril C, Ramirez R, Pardo A, et al. Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol. 2008;40(10):2129–40 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  166. Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol. 2005;166(5):1321–32 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  167. Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci USA. 2011;108(52):E1475–83 [Comparative Study Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  168. Chapman HA. Epithelial responses to lung injury: role of the extracellular matrix. Proc Am Thorac Soc. 2012;9(3):89–95.

    PubMed  CAS  Google Scholar 

  169. Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, et al. Integrin alpha6beta4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest. 2011;121(7):2855–62 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  170. Zhang K, Rekhter MD, Gordon D, Phan SH. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol. 1994;145(1):114–25 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  171. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122(1):103–11.

    PubMed  CAS  Google Scholar 

  172. Phan SH. Fibroblast phenotypes in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2003;29(3 Suppl):S87–92.

    PubMed  CAS  Google Scholar 

  173. Hagood JS, Lasky JA, Nesbitt JE, Segarini P. Differential expression, surface binding, and response to connective tissue growth factor in lung fibroblast subpopulations. Chest. 2001;120(1 Suppl):64S–6 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  174. Hagood JS, Prabhakaran P, Kumbla P, Salazar L, MacEwen MW, Barker TH, et al. Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am J Pathol. 2005;167(2):365–79 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  175. Sanders YY, Kumbla P, Hagood JS. Enhanced myofibroblastic differentiation and survival in Thy-1(−) lung fibroblasts. Am J Respir Cell Mol Biol. 2007;36(2):226–35 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  176. Emblom-Callahan MC, Chhina MK, Shlobin OA, Ahmad S, Reese ES, Iyer EP, et al. Genomic phenotype of non-cultured pulmonary fibroblasts in idiopathic pulmonary fibrosis. Genomics. 2010;96(3):134–45.

    PubMed  CAS  Google Scholar 

  177. Xia H, Diebold D, Nho R, Perlman D, Kleidon J, Kahm J, et al. Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Exp Med. 2008;205(7):1659–72 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  178. Ramos C, Montano M, Garcia-Alvarez J, Ruiz V, Uhal BD, Selman M, et al. Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression. Am J Respir Cell Mol Biol. 2001;24(5):591–8.

    PubMed  CAS  Google Scholar 

  179. Torry DJ, Richards CD, Podor TJ, Gauldie J. Anchorage-independent colony growth of pulmonary fibroblasts derived from fibrotic human lung tissue. J Clin Invest. 1994;93(4):1525–32 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  180. Larsson O, Diebold D, Fan D, Peterson M, Nho RS, Bitterman PB, et al. Fibrotic myofibroblasts manifest genome-wide derangements of translational control. PLoS One. 2008;3(9):e3220 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  181. White ES, Atrasz RG, Hu B, Phan SH, Stambolic V, Mak TW, et al. Negative regulation of myofibroblast differentiation by PTEN (Phosphatase and Tensin Homolog Deleted on chromosome 10). Am J Respir Crit Care Med. 2006;173(1):112–21 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  182. Okamoto T, Schlegel A, Scherer PE, Lisanti MP. Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J Biol Chem. 1998;273(10):5419–22 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    PubMed  CAS  Google Scholar 

  183. Liu P, Ying Y, Ko YG, Anderson RG. Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. J Biol Chem. 1996;271(17):10299–303 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  184. Wang XM, Zhang Y, Kim HP, Zhou Z, Feghali-Bostwick CA, Liu F, et al. Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med. 2006;203(13):2895–906 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  185. Sagana RL, Yan M, Cornett AM, Tsui JL, Stephenson DA, Huang SK, et al. Phosphatase and tensin homologue on chromosome 10 (PTEN) directs prostaglandin E2-mediated fibroblast responses via regulation of E prostanoid 2 receptor expression. J Biol Chem. 2009;284(47):32264–71 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  186. Huang SK, Fisher AS, Scruggs AM, White ES, Hogaboam CM, Richardson BC, et al. Hypermethylation of PTGER2 confers prostaglandin E2 resistance in fibrotic fibroblasts from humans and mice. Am J Pathol. 2010;177(5):2245–55 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  187. Kane CJ, Hebda PA, Mansbridge JN, Hanawalt PC. Direct evidence for spatial and temporal regulation of transforming growth factor beta 1 expression during cutaneous wound healing. J Cell Physiol. 1991;148(1):157–73 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  188. Gauldie J, Bonniaud P, Sime P, Ask K, Kolb M. TGF-beta, Smad3 and the process of progressive fibrosis. Biochem Soc Trans. 2007;35(Pt 4):661–4.

    PubMed  CAS  Google Scholar 

  189. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18(7):816–27.

    PubMed  CAS  Google Scholar 

  190. Sheppard D. Transforming growth factor beta: a central modulator of pulmonary and airway inflammation and fibrosis. Proc Am Thorac Soc. 2006;3(5):413–7 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  191. Broekelmann TJ, Limper AH, Colby TV, McDonald JA. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci USA. 1991;88(15):6642–6.

    PubMed  CAS  Google Scholar 

  192. Khalil N, O’Connor RN, Unruh HW, Warren PW, Flanders KC, Kemp A, et al. Increased production and immunohistochemical localization of transforming growth factor-beta in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 1991;5(2):155–62 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  193. Giri SN, Hyde DM, Hollinger MA. Effect of antibody to transforming growth factor beta on bleomycin induced accumulation of lung collagen in mice. Thorax. 1993;48(10):959–66.

    PubMed  CAS  Google Scholar 

  194. Wang Q, Wang Y, Hyde DM, Gotwals PJ, Koteliansky VE, Ryan ST, et al. Reduction of bleomycin induced lung fibrosis by transforming growth factor beta soluble receptor in hamsters. Thorax. 1999;54(9):805–12.

    PubMed  CAS  Google Scholar 

  195. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci. 2003;116(Pt 2):217–24 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    PubMed  CAS  Google Scholar 

  196. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–9 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  197. Rifkin DB. Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. J Biol Chem. 2005;280(9):7409–12.

    PubMed  CAS  Google Scholar 

  198. Jenkins G. The role of proteases in transforming growth factor-beta activation. Int J Biochem Cell Biol. 2008;40(6–7):1068–78.

    PubMed  CAS  Google Scholar 

  199. Xu MY, Porte J, Knox AJ, Weinreb PH, Maher TM, Violette SM, et al. Lysophosphatidic acid induces alphavbeta6 integrin-mediated TGF-beta activation via the LPA2 receptor and the small G protein G alpha(q). Am J Pathol. 2009;174(4):1264–79 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  200. Hinz B. Mechanical aspects of lung fibrosis: a spotlight on the myofibroblast. Proc Am Thorac Soc. 2012;9(3):137–47.

    PubMed  CAS  Google Scholar 

  201. Hoyles RK, Derrett-Smith EC, Khan K, Shiwen X, Howat SL, Wells AU, et al. An essential role for resident fibroblasts in experimental lung fibrosis is defined by lineage-specific deletion of high-affinity type II transforming growth factor beta receptor. Am J Respir Crit Care Med. 2011;183(2):249–61 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  202. Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Maruoka S, Horie T. Transforming growth Factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway. Am J Respir Crit Care Med. 2001;163(1):152–7.

    PubMed  CAS  Google Scholar 

  203. Shi-wen X, Parapuram SK, Pala D, Chen Y, Carter DE, Eastwood M, et al. Requirement of transforming growth factor beta-activated kinase 1 for transforming growth factor beta-induced alpha-smooth muscle actin expression and extracellular matrix contraction in fibroblasts. Arthritis Rheum. 2009;60(1):234–41.

    PubMed  Google Scholar 

  204. Wilkes MC, Mitchell H, Penheiter SG, Dore JJ, Suzuki K, Edens M, et al. Transforming growth factor-beta activation of phosphatidylinositol 3-kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-activated kinase-2. Cancer Res. 2005;65(22):10431–40 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  205. Horowitz JC, Rogers DS, Sharma V, Vittal R, White ES, Cui Z, et al. Combinatorial activation of FAK and AKT by transforming growth factor-beta1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal. 2007;19(4):761–71 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  206. Thannickal VJ, Lee DY, White ES, Cui Z, Larios JM, Chacon R, et al. Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem. 2003;278(14):12384–9.

    PubMed  CAS  Google Scholar 

  207. Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH, et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest. 2004;114(9):1308–16 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  208. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958):577–84.

    PubMed  CAS  Google Scholar 

  209. Sandbo N, Lau A, Kach J, Ngam C, Yau D, Dulin NO. Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-beta. Am J Physiol Lung Cell Mol Physiol. 2011;301(5):L656–66 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  210. Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15(9):1077–81 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  211. Sandbo N, Dulin N. Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res. 2011;158(4):181–96 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  212. Horowitz JC, Lee DY, Waghray M, Keshamouni VG, Thomas PE, Zhang H, et al. Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. J Biol Chem. 2004;279(2):1359–67.

    PubMed  CAS  Google Scholar 

  213. Varga J, Jimenez SA. Stimulation of normal human fibroblast collagen production and processing by transforming growth factor-beta. Biochem Biophys Res Commun. 1986;138(2):974–80 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  214. Ignotz RA, Massague J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986;261(9):4337–45.

    PubMed  CAS  Google Scholar 

  215. Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010;182(2):220–9 [Clinical Trial Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  216. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, et al. Mir-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207(8):1589–97 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  217. Aoki J. Mechanisms of lysophosphatidic acid production. Semin Cell Dev Biol. 2004;15(5):477–89.

    PubMed  CAS  Google Scholar 

  218. Funke M, Zhao Z, Xu Y, Chun J, Tager AM. The lysophosphatidic acid receptor LPA1 promotes epithelial cell apoptosis after lung injury. Am J Respir Cell Mol Biol. 2012;46(3):355–64 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  219. Tager AM, LaCamera P, Shea BS, Campanella GS, Selman M, Zhao Z, et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med. 2008;14(1):45–54 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  220. Sakai T, Peyruchaud O, Fassler R, Mosher DF. Restoration of beta1A integrins is required for lysophosphatidic acid-induced migration of beta1-null mouse fibroblastic cells. J Biol Chem. 1998;273(31):19378–82 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  221. Fonseca C, Abraham D, Renzoni EA. Endothelin in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2011;44(1):1–10.

    PubMed  CAS  Google Scholar 

  222. Uhal BD, Li X, Piasecki CC, Molina-Molina M. Angiotensin signalling in pulmonary fibrosis. Int J Biochem Cell Biol. 2012;44(3):465–8.

    PubMed  CAS  Google Scholar 

  223. Trojanowska M. Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology (Oxford). 2008;47 Suppl 5:v2–4.

    CAS  Google Scholar 

  224. Hardie WD, Hagood JS, Dave V, Perl AK, Whitsett JA, Korfhagen TR, et al. Signaling pathways in the epithelial origins of pulmonary fibrosis. Cell Cycle. 2010;9(14):2769–76 [Research Support, N.I.H., Extramural Review].

    PubMed  CAS  Google Scholar 

  225. Pan LH, Ohtani H, Yamauchi K, Nagura H. Co-expression of TNF alpha and IL-1 beta in human acute pulmonary fibrotic diseases: an immunohistochemical analysis. Pathol Int. 1996;46(2):91–9.

    PubMed  CAS  Google Scholar 

  226. Zhang Y, Lee TC, Guillemin B, Yu MC, Rom WN. Enhanced IL-1 beta and tumor necrosis factor-alpha release and messenger RNA expression in macrophages from idiopathic pulmonary fibrosis or after asbestos exposure. J Immunol. 1993;150(9):4188–96 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  227. Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO, Cheever AW, et al. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med. 2010;207(3):535–52 [Research Support, N.I.H., Intramural].

    PubMed  CAS  Google Scholar 

  228. Wallace WA, Ramage EA, Lamb D, Howie SE. A type 2 (Th2-like) pattern of immune response predominates in the pulmonary interstitium of patients with cryptogenic fibrosing alveolitis (CFA). Clin Exp Immunol. 1995;101(3):436–41 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  229. Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med. 2011;208(7):1339–50 [Research Support, N.I.H., Intramural Review].

    PubMed  CAS  Google Scholar 

  230. Park SW, Ahn MH, Jang HK, Jang AS, Kim DJ, Koh ES, et al. Interleukin-13 and its receptors in idiopathic interstitial pneumonia: clinical implications for lung function. J Korean Med Sci. 2009;24(4):614–20 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  231. Moore BB, Kolodsick JE, Thannickal VJ, Cooke K, Moore TA, Hogaboam C, et al. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am J Pathol. 2005;166(3):675–84 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  232. Agostini C, Gurrieri C. Chemokine/cytokine cocktail in idiopathic pulmonary fibrosis. Proc Am Thorac Soc. 2006;3(4):357–63 [Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  233. Baran CP, Opalek JM, McMaken S, Newland CA, O’Brien Jr JM, Hunter MG, et al. Important roles for macrophage colony-stimulating factor, CC chemokine ligand 2, and mononuclear phagocytes in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. 2007;176(1):78–89 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  234. Car BD, Meloni F, Luisetti M, Semenzato G, Gialdroni-Grassi G, Walz A. Elevated IL-8 and MCP-1 in the bronchoalveolar lavage fluid of patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am J Respir Crit Care Med. 1994;149(3 Pt 1):655–9 [Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  235. Standiford TJ, Kunkel SL, Liebler JM, Burdick MD, Gilbert AR, Strieter RM. Gene expression of macrophage inflammatory protein-1 alpha from human blood monocytes and alveolar macrophages is inhibited by interleukin-4. Am J Respir Cell Mol Biol. 1993;9(2):192–8 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  236. Standiford TJ, Rolfe MR, Kunkel SL, Lynch 3rd JP, Becker FS, Orringer MB, et al. Altered production and regulation of monocyte chemoattractant protein-1 from pulmonary fibroblasts isolated from patients with idiopathic pulmonary fibrosis. Chest. 1993;103(2 Suppl):121S.

    PubMed  CAS  Google Scholar 

  237. Standiford TJ, Rolfe MW, Kunkel SL, Lynch 3rd JP, Burdick MD, Gilbert AR, et al. Macrophage inflammatory protein-1 alpha expression in interstitial lung disease. J Immunol. 1993;151(5):2852–63 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  238. Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis. 2010;30(3):245–57.

    PubMed  CAS  Google Scholar 

  239. Prasse A, Probst C, Bargagli E, Zissel G, Toews GB, Flaherty KR, et al. Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179(8):717–23.

    PubMed  CAS  Google Scholar 

  240. Gibbons MA, MacKinnon AC, Ramachandran P, Dhaliwal K, Duffin R, Phythian-Adams AT, et al. Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. Am J Respir Crit Care Med. 2011;184(5):569–81 [Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  241. Turner-Warwick M. Precapillary systemic-pulmonary anastomoses. Thorax. 1963;18:225–37.

    PubMed  CAS  Google Scholar 

  242. Simler NR, Brenchley PE, Horrocks AW, Greaves SM, Hasleton PS, Egan JJ. Angiogenic cytokines in patients with idiopathic interstitial pneumonia. Thorax. 2004;59(7):581–5 [Clinical Trial Comparative Study Controlled Clinical Trial].

    PubMed  CAS  Google Scholar 

  243. Parra ER, David YR, da Costa LR, Ab’Saber A, Sousa R, Kairalla RA, et al. Heterogeneous remodeling of lung vessels in idiopathic pulmonary fibrosis. Lung. 2005;183(4):291–300 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  244. Ebina M, Shimizukawa M, Shibata N, Kimura Y, Suzuki T, Endo M, et al. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2004;169(11):1203–8 [Comparative Study Evaluation Studies Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  245. Renzoni EA, Walsh DA, Salmon M, Wells AU, Sestini P, Nicholson AG, et al. Interstitial vascularity in fibrosing alveolitis. Am J Respir Crit Care Med. 2003;167(3):438–43.

    PubMed  Google Scholar 

  246. Sumi M, Satoh H, Kagohashi K, Ishikawa H, Sekizawa K. Increased serum levels of endostatin in patients with idiopathic pulmonary fibrosis. J Clin Lab Anal. 2005;19(4):146–9.

    PubMed  CAS  Google Scholar 

  247. Cosgrove GP, Brown KK, Schiemann WP, Serls AE, Parr JE, Geraci MW, et al. Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am J Respir Crit Care Med. 2004;170(3):242–51 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  248. Raghu G, Striker LJ, Hudson LD, Striker GE. Extracellular matrix in normal and fibrotic human lungs. Am Rev Respir Dis. 1985;131(2):281–9 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  249. Kaarteenaho-Wiik R, Lammi L, Lakari E, Kinnula VL, Risteli J, Ryhanen L, et al. Localization of precursor proteins and mRNA of type I and III collagens in usual interstitial pneumonia and sarcoidosis. J Mol Histol. 2005;36(6–7):437–46 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  250. Selman M, Ruiz V, Cabrera S, Segura L, Ramirez R, Barrios R, et al. TIMP-1, -2, -3, and −4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? Am J Physiol Lung Cell Mol Physiol. 2000;279(3):L562–74 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  251. Montano M, Ramos C, Gonzalez G, Vadillo F, Pardo A, Selman M. Lung collagenase inhibitors and spontaneous and latent collagenase activity in idiopathic pulmonary fibrosis and hypersensitivity pneumonitis. Chest. 1989;96(5):1115–9.

    PubMed  CAS  Google Scholar 

  252. Gadek JE, Kelman JA, Fells G, Weinberger SE, Horwitz AL, Reynolds HY, et al. Collagenase in the lower respiratory tract of patients with idiopathic pulmonary fibrosis. N Engl J Med. 1979;301(14):737–42.

    PubMed  CAS  Google Scholar 

  253. Garcia-Alvarez J, Ramirez R, Sampieri CL, Nuttall RK, Edwards DR, Selman M, et al. Membrane type-matrix metalloproteinases in idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis. 2006;23(1):13–21 [Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  254. Pardo A, Selman M, Kaminski N. Approaching the degradome in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol. 2008;40(6–7):1141–55.

    PubMed  CAS  Google Scholar 

  255. Agnihotri R, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L. Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem. 2001;276(30):28261–7 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  256. Loffek S, Schilling O, Franzke CW. Series "matrix metalloproteinases in lung health and disease": Biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38(1):191–208 [Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  257. Fukuda Y, Ishizaki M, Kudoh S, Kitaichi M, Yamanaka N. Localization of matrix metalloproteinases-1, -2, and -9 and tissue inhibitor of metalloproteinase-2 in interstitial lung diseases. Lab Invest. 1998;78(6):687–98 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  258. Hayashi T, Stetler-Stevenson WG, Fleming MV, Fishback N, Koss MN, Liotta LA, et al. Immunohistochemical study of metalloproteinases and their tissue inhibitors in the lungs of patients with diffuse alveolar damage and idiopathic pulmonary fibrosis. Am J Pathol. 1996;149(4):1241–56.

    PubMed  CAS  Google Scholar 

  259. Atkinson JJ, Senior RM. Matrix metalloproteinase-9 in lung remodeling. Am J Respir Cell Mol Biol. 2003;28(1):12–24 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    PubMed  CAS  Google Scholar 

  260. Lemjabbar H, Gosset P, Lechapt-Zalcman E, Franco-Montoya ML, Wallaert B, Harf A, et al. Overexpression of alveolar macrophage gelatinase B (MMP-9) in patients with idiopathic pulmonary fibrosis: effects of steroid and immunosuppressive treatment. Am J Respir Cell Mol Biol. 1999;20(5):903–13.

    PubMed  CAS  Google Scholar 

  261. Suga M, Iyonaga K, Okamoto T, Gushima Y, Miyakawa H, Akaike T, et al. Characteristic elevation of matrix metalloproteinase activity in idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2000;162(5):1949–56 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  262. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18(6):884–901 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  263. Muro AF, Moretti FA, Moore BB, Yan M, Atrasz RG, Wilke CA, et al. An essential role for fibronectin extra type III domain A in pulmonary fibrosis. Am J Respir Crit Care Med. 2008;177(6):638–45 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  264. Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci USA. 2007;104(40):15858–63 [Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  265. Okamoto M, Hoshino T, Kitasato Y, Sakazaki Y, Kawayama T, Fujimoto K, et al. Periostin, a matrix protein, is a novel biomarker for idiopathic interstitial pneumonias. Eur Respir J. 2011;37(5):1119–27 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  266. Uchida M, Shiraishi H, Ohta S, Arima K, Taniguchi K, Suzuki S, et al. Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012;46(5):677–86 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  267. Li Y, Jiang D, Liang J, Meltzer EB, Gray A, Miura R, et al. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J Exp Med. 2011;208(7):1459–71 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  268. Sottile J, Hocking DC. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell. 2002;13(10):3546–59 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  269. Lucero HA, Kagan HM. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci. 2006;63(19–20):2304–16 [Research Support, N.I.H., Extramural Review].

    PubMed  CAS  Google Scholar 

  270. Barry-Hamilton V, Spangler R, Marshall D, McCauley S, Rodriguez HM, Oyasu M, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med. 2010;16(9):1009–17.

    PubMed  CAS  Google Scholar 

  271. Georges PC, Hui JJ, Gombos Z, McCormick ME, Wang AY, Uemura M, et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1147–54 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  272. Olsen KC, Sapinoro RE, Kottmann RM, Kulkarni AA, Iismaa SE, Johnson GV, et al. Transglutaminase 2 and its role in pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184(6):699–707 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  273. Liu F, Tschumperlin DJ. Micro-mechanical characterization of lung tissue using atomic force microscopy. J Vis Exp. 2011;(54):pii: 2911 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Video-Audio Media].

    Google Scholar 

  274. Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol. 2010;190(4):693–706 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    PubMed  CAS  Google Scholar 

  275. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310(5751):1139–43.

    PubMed  CAS  Google Scholar 

  276. Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol. 2001;159(3):1009–20.

    PubMed  CAS  Google Scholar 

  277. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349–63.

    PubMed  CAS  Google Scholar 

  278. Grinnell F, Zhu M, Carlson MA, Abrams JM. Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp Cell Res. 1999;248(2):608–19 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  279. Huang X, Yang N, Fiore VF, Barker TH, Sun Y, Morris SW, et al. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol. 2012;47(3):340–8.

    PubMed  CAS  Google Scholar 

  280. Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J Cell Biol. 2006;172(2):259–68.

    PubMed  CAS  Google Scholar 

  281. Maeda T, Sakabe T, Sunaga A, Sakai K, Rivera AL, Keene DR, et al. Conversion of mechanical force into TGF-beta-mediated biochemical signals. Curr Biol. 2011;21(11):933–41 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  282. Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, et al. Latent TGF-beta structure and activation. Nature. 2011;474(7351):343–9 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  283. Arora PD, Narani N, McCulloch CA. The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol. 1999;154(3):871–82.

    PubMed  CAS  Google Scholar 

  284. Li Z, Dranoff JA, Chan EP, Uemura M, Sevigny J, Wells RG. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology. 2007;46(4):1246–56 [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  285. Marinkovic A, Mih JD, Park JA, Liu F, Tschumperlin DJ. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-beta responsiveness. Am J Physiol Lung Cell Mol Physiol. 2012;303(3):L169–80.

    PubMed  CAS  Google Scholar 

  286. Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS. Matrix rigidity regulates a switch between TGF-beta1-induced apoptosis and epithelial-mesenchymal transition. Mol Biol Cell. 2012;23(5):781–91 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    PubMed  CAS  Google Scholar 

  287. Balestrini JL, Chaudhry S, Sarrazy V, Koehler A, Hinz B. The mechanical memory of lung myofibroblasts. Integr Biol (Camb). 2012;4(4):410–21 [Research Support, Non-U.S. Gov’t].

    CAS  Google Scholar 

  288. Trujillo G, Meneghin A, Flaherty KR, Sholl LM, Myers JL, Kazerooni EA, et al. TLR9 differentiates rapidly from slowly progressing forms of idiopathic pulmonary fibrosis. Sci Transl Med. 2010;2(57):57ra82 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  289. Pierce EM, Carpenter K, Jakubzick C, Kunkel SL, Flaherty KR, Martinez FJ, et al. Therapeutic targeting of CC ligand 21 or CC chemokine receptor 7 abrogates pulmonary fibrosis induced by the adoptive transfer of human pulmonary fibroblasts to immunodeficient mice. Am J Pathol. 2007;170(4):1152–64 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  290. King Jr TE, Brown KK, Raghu G, du Bois RM, Lynch DA, Martinez F, et al. BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184(1):92–9 [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  291. Raghu G, Behr J, Brown K, Egan J, Kawut S, Flaherty, K, et al. A Placebo-Controlled Trial of Ambrisentan in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2912;185:A:3632 [Abstract].

    Google Scholar 

  292. Raghu G, Brown KK, Costabel U, Cottin V, du Bois RM, Lasky JA, et al. Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am J Respir Crit Care Med. 2008;178(9):948–55 [Clinical Trial, Phase II Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  293. King Jr TE, Albera C, Bradford WZ, Costabel U, Hormel P, Lancaster L, et al. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. Lancet. 2009;374(9685):222–8 [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  294. Daniels CE, Lasky JA, Limper AH, Mieras K, Gabor E, Schroeder DR. Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am J Respir Crit Care Med. 2010;181(6):604–10 [Clinical Trial, Phase II Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  295. Maher TM. Pirfenidone in idiopathic pulmonary fibrosis. Drugs Today (Barc). 2010;46(7):473–82 [Research Support, Non-U.S. Gov’t Review].

    CAS  Google Scholar 

  296. Azuma A, Nukiwa T, Tsuboi E, Suga M, Abe S, Nakata K, et al. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2005;171(9):1040–7 [Clinical Trial Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  297. Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377(9779):1760–9 [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  298. Taniguchi H, Ebina M, Kondoh Y, Ogura T, Azuma A, Suga M, et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J. 2010;35(4):821–9 [Clinical Trial, Phase III Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  299. Richeldi L, Costabel U, Selman M, Kim DS, Hansell DM, Nicholson AG, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011;365(12):1079–87 [Clinical Trial, Phase II Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  300. Rossi GP, Seccia TM. Sildenafil in idiopathic pulmonary fibrosis. N Engl J Med. 2010;363(22):2169–70. author reply 70–1.

    PubMed  CAS  Google Scholar 

  301. Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, et al. Cooperative interaction of CTGF and TGF-beta in animal models of fibrotic disease. Fibrogenesis Tissue Repair. 2011;4(1):4.

    PubMed  Google Scholar 

  302. ClinicalTrials.gov. STX-100 in patients with idiopathic pulmonary fibrosis (IPF) Identifier: NCT01371305. [updated 5/9/128/28/12].

    Google Scholar 

  303. Demedts M, Behr J, Buhl R, Costabel U, Dekhuijzen R, Jansen HM, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2005;353(21):2229–42 [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  304. Zisman DA, Schwarz M, Anstrom KJ, Collard HR, Flaherty KR, Hunninghake GW. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N Engl J Med. 2010;363(7):620–8 [Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  305. Rajkumar R, Konishi K, Richards TJ, Ishizawar DC, Wiechert AC, Kaminski N, et al. Genomewide RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial hypertension and secondary pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2010;298(4):H1235–48 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  306. Rosas IO, Richards TJ, Konishi K, Zhang Y, Gibson K, Lokshin AE, et al. MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med. 2008;5(4):e93 [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  307. Chadalavada RS, Korkola JE, Houldsworth J, Olshen AB, Bosl GJ, Studer L, et al. Constitutive gene expression predisposes morphogen-mediated cell fate responses of NT2/D1 and 27X-1 human embryonal carcinoma cells. Stem Cells. 2007;25(3):771–8 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  308. Selman M, Carrillo G, Estrada A, Mejia M, Becerril C, Cisneros J, et al. Accelerated variant of idiopathic pulmonary fibrosis: clinical behavior and gene expression pattern. PLoS One. 2007;2(5):e482 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  309. Boon K, Bailey NW, Yang J, Steel MP, Groshong S, Kervitsky D, et al. Molecular phenotypes distinguish patients with relatively stable from progressive idiopathic pulmonary fibrosis (IPF). PLoS One. 2009;4(4):e5134.

    PubMed  Google Scholar 

  310. Konishi K, Gibson KF, Lindell KO, Richards TJ, Zhang Y, Dhir R, et al. Gene expression profiles of acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;180(2):167–75 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  311. Dey N, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. TGFbeta-stimulated MicroRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. PLoS One. 2012;7(8):e42316.

    PubMed  CAS  Google Scholar 

  312. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001;293(5532):1068–70 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  313. Rauch TA, Zhong X, Wu X, Wang M, Kernstine KH, Wang Z, et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci USA. 2008;105(1):252–7 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  314. Rabinovich EI, Kapetanaki MG, Steinfeld I, Gibson KF, Pandit KV, Yu G, et al. Global methylation patterns in idiopathic pulmonary fibrosis. PLoS One. 2012;7(4):e33770 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  315. Coward WR, Watts K, Feghali-Bostwick CA, Jenkins G, Pang L. Repression of IP-10 by interactions between histone deacetylation and hypermethylation in idiopathic pulmonary fibrosis. Mol Cell Biol. 2010;30(12):2874–86 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  316. Ramirez G, Hagood JS, Sanders Y, Ramirez R, Becerril C, Segura L, et al. Absence of Thy-1 results in TGF-beta induced MMP-9 expression and confers a profibrotic phenotype to human lung fibroblasts. Lab Invest. 2011;91(8):1206–18 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  317. Hu B, Gharaee-Kermani M, Wu Z, Phan SH. Epigenetic regulation of myofibroblast differentiation by DNA methylation. Am J Pathol. 2010;177(1):21–8 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Sandbo M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sandbo, N. (2014). Mechanisms of Fibrosis in IPF. In: Meyer, K., Nathan, S. (eds) Idiopathic Pulmonary Fibrosis. Respiratory Medicine, vol 9. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-682-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-682-5_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-681-8

  • Online ISBN: 978-1-62703-682-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics