Skip to main content

Novel Anti-angiogenic Therapies Using Naturally Occurring and Synthetic Drugs to Combat Progestin-Dependent Breast Cancer

  • Chapter
  • First Online:
Cell and Molecular Biology of Breast Cancer

Abstract

Angiogenesis, the process by which new blood vessels are formed, is essential for both normal and pathological tissue expansion and provides the nourishment necessary for growth. The role of growth factors which promote angiogenesis in pathologic conditions of the breast is now well established. Recently the synthetic progestin component of combination estrogen and progestin hormone replacement therapy (HRT) has been associated with increased risk of breast cancer in postmenopausal women. We demonstrated that progestins induce breast cancer cells to produce vascular endothelial growth factor (VEGF), a potent angiogenic growth factor that promotes angiogenesis and causes tumors to grow. Unfortunately, synthetic antiprogestins are toxic, precluding their use as a means by which to suppress the proangiogenic activity of administered progestins. In this chapter we will discuss our studies aimed at identifying both naturally occurring and synthetic compounds with antiprogestin and anti-angiogenic activities. We will describe our progress using agents which block the production of progestin-induced VEGF from breast cancer cells and which also have the capacity to both treat and prevent progestin-dependent breast disease in animal models. We contend that information gained from such studies could facilitate the development of personalized medicine which might be used to more precisely and selectively target a specific signal transduction pathway essential to angiogenesis, thereby controlling the formation of new blood vessels essential for nourishing the rapid growth of hormone-dependent breast tumors. Our studies could also further the concept of “angio-prevention” of breast cancer in individuals who are particularly susceptible to progestin-dependent disease, for example, women who have mutations in tumor suppressors such as p53 and Brca-1. By maintaining the angiogenic switch “off” within tumor cells, the development of hormone-dependent breast cancers may be prevented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crawford Y, Ferrara N. VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res. 2009;335:261–9.

    PubMed  CAS  Google Scholar 

  2. Rosen EM, Goldberg ID. Regulation of angiogenesis by scatter factor. EXS. 1997;79:193–208.

    PubMed  CAS  Google Scholar 

  3. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27–31.

    PubMed  CAS  Google Scholar 

  4. DeSantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics. CA Cancer J Clin. 2011;61:409–18.

    PubMed  Google Scholar 

  5. Kaklamani VG, Gradishar WJ. Adjuvant therapy of breast cancer. Cancer Invest. 2005;23:548–60.

    PubMed  CAS  Google Scholar 

  6. Navolanic PM, McCubrey JA. Pharmacological breast cancer therapy (review). Int J Oncol. 2005;27:1341–4.

    PubMed  CAS  Google Scholar 

  7. Chung AS, Kowanetz M, Wu X, Zhuang G, Ngu H, Finkle D, Komuves L, Peale F, Ferrara N. Differential drug-class specific metastatic effects following treatment with a panel of angiogenesis inhibitors. J Pathol. 2012. doi:10.1002/path.4052.

    Google Scholar 

  8. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005;438:967–74.

    PubMed  CAS  Google Scholar 

  9. Hyder SM. Sex-steroid regulation of vascular endothelial growth factor in breast cancer. Endocr Relat Cancer. 2006;13:667–87.

    PubMed  CAS  Google Scholar 

  10. Schneider BP, Miller KD. Angiogenesis of breast cancer. J Clin Oncol. 2005;23:1782–90.

    PubMed  CAS  Google Scholar 

  11. Hyder SM, Stancel GM. Regulation of angiogenic growth factors in the female reproductive tract by estrogens and progestins. Mol Endocrinol. 1999;13:806–11.

    PubMed  CAS  Google Scholar 

  12. Hyder SM, Stancel GM. Regulation of VEGF in the reproductive tract by sex-steroid hormones. Histol Histopathol. 2000;15:325–34.

    PubMed  CAS  Google Scholar 

  13. Koutras AK, Starakis I, Lymperatou D, Kalofonos HP. Angiogenesis as a therapeutic target in breast cancer. Mini Rev Med Chem. 2012;12:1230–8.

    PubMed  CAS  Google Scholar 

  14. Chlebowski RT, Anderson GL, Gass M, et al. Writing group for Women’s Health Initiative Investigators. Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA. 2010;304:1719–20.

    Google Scholar 

  15. Ross RK, Paganini-Hill A, Wan PC, Pike MC. Effects of hormone replacement therapy on breast cancer risk: estrogen versus estrogen plus progestin. J Natl Cancer Inst. 2000;92: 328–32.

    PubMed  CAS  Google Scholar 

  16. Benakanakere I, Williford CB, Schnell J, Brandt S, Ellersieck MR, Molinolo A, Hyder SM. Natural and synthetic progestins accelerate 7, 12-Dimethylbenz[a] Anthracene-initiated mammary tumors and increase angiogenesis in Sprague-Dawley rats. Clin Cancer Res. 2006;12:4062–71.

    PubMed  CAS  Google Scholar 

  17. Benakanakere I, Besch-Williford C, Ellersieck MR, Hyder SM. Regression of progestin-accelerated 7,12-dimethylbenz[a]anthracene-induced mammary tumors in Sprague-Dawley rats by p53 reactivation and induction of massive apoptosis: a pilot study. Endocr Relat Cancer. 2009;16:85–98.

    PubMed  CAS  Google Scholar 

  18. Benakanakere I, Besch-Williford C, Carroll CE, Hyder SM. Synthetic progestins differentially promote or prevent 7,12-Dimethylbenz(a)anthracene-induced mammary tumors in Sprague-Dawley rats. Cancer Prev Res. 2010;3:1157–67.

    CAS  Google Scholar 

  19. Liang Y, Wu J, Stancel GM, Hyder SM. p53-dependent inhibition of progestin-induced VEGF expression in human breast cancer cells. J Steroid Biochem Mol Biol. 2005;93:173–82.

    PubMed  CAS  Google Scholar 

  20. Liang Y, Brekken RA, Hyder SM. Vascular endothelial growth factor induces proliferation of breast cancer cells and inhibits the anti-proliferative activity of anti-hormones. Endocr Relat Cancer. 2006;13:905–19.

    PubMed  CAS  Google Scholar 

  21. Liang Y, Besch-Williford C, Brekken RA, Hyder SM. Progestin-dependent progression of human breast tumor xenografts: a novel model for evaluating anti-tumor therapeutics. Cancer Res. 2007;67:9929–36.

    PubMed  CAS  Google Scholar 

  22. Liang Y, Benakanakere I, Besch-Williford CB, Ellersieck MR, Hyder SM. Synthetic progestins induce growth and metastasis of BT-474 human breast cancer xenografts in nude mice. Menopause. 2010;17:1040–7.

    PubMed  Google Scholar 

  23. Bareschino MA, Schettino C, Colantuoni G, Rossi E, Rossi A, Maione P, Ciardiello F, Gridelli C. The role of antiangiogenetic agents in the treatment of breast cancer. Curr Med Chem. 2011;18:5022–32.

    PubMed  CAS  Google Scholar 

  24. Dabrosin C, Palmer K, Muller WJ, Gauldie J. Estradiol promotes growth and angiogenesis in polyoma middle T transgenic mouse mammary tumor explants. Breast Cancer Res Treat. 2003;78:1–6.

    PubMed  CAS  Google Scholar 

  25. Khosravi SP, Soria LA, Perez MG. Tumoral angiogenesis and breast cancer. Clin Transl Oncol. 2009;11:138–42.

    Google Scholar 

  26. Lichtenbeld HC, Barendsz-Janson AF, van Essen H, Struijker Boudier H, Griffioen AW, Hillen HF. Angiogenic potential of malignant and non-malignant human breast tissues in an in vivo angiogenesis model. Int J Cancer. 1998;77:455–9.

    PubMed  CAS  Google Scholar 

  27. Brem SS, Gullino PM, Medina D. Angiogenesis: a marker for neoplastic transformation of mammary papillary hyperplasia. Science. 1977;195:880–2.

    PubMed  CAS  Google Scholar 

  28. Jensen HM, Chen I, De Vault MF, Lewis AE. Angiogenesis induced by “normal” human breast tissue: a probable marker for precancer. Science. 1982;218:293–5.

    PubMed  CAS  Google Scholar 

  29. Sledge Jr GW, Miller KD. Exploiting the hallmarks of cancer: the future conquest of breast cancer. Eur J Cancer. 2003;39:1668–75.

    PubMed  Google Scholar 

  30. Zhang HT, Craft P, Scott PA, Ziche M, Weich HA, Harris AL, Bicknell R. Enhancement of tumor growth and vascular density by transfection of vascular endothelial cell growth factor into MCF-7 human breast carcinoma cells. J Natl Cancer Inst. 1995;87:231–19.

    Google Scholar 

  31. Fox SB, Generali DG, Harris AL. Breast tumour angiogenesis. Breast Cancer Res. 2007;181:207–12.

    Google Scholar 

  32. Toffoli S, Roegiers A, Feron O, et al. Intermittent hypoxia is an angiogenic inducer for endothelial cells: role of HIF-1. Angiogenesis. 2009;12:47–67.

    PubMed  CAS  Google Scholar 

  33. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401–10.

    PubMed  CAS  Google Scholar 

  34. Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, Watnick RS, Straume O, Akslen LA, Folkman J, Almog N. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst. 2006;98:316–25.

    PubMed  Google Scholar 

  35. Dvorak HF, Detmar M, Claffey KP, Nagy JA, van de Water L, Senger DR. Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation. Int Arch Allergy Immunol. 1995;107:233–5.

    PubMed  CAS  Google Scholar 

  36. Rosenthal RA, Megyesi JF, Henzel WJ, Ferrara N, Folkman J. Conditioned medium from mouse sarcoma 180 cells contains vascular endothelial growth factor. Growth Factors. 1990;4:53–9.

    PubMed  CAS  Google Scholar 

  37. Noh JJ, Maskarinec G, Pagano I, Cheung LW, Stanczyk FZ. Mammographic densities and circulating hormones: a cross-sectional study in premenopausal women. Breast. 2006;15:20–8.

    PubMed  Google Scholar 

  38. Thomas T, Rhodin J, Clark L, Garces A. Progestins initiate adverse events of menopausal estrogen therapy. Climacteric. 2003;6:293–301.

    PubMed  CAS  Google Scholar 

  39. Liang Y, Hyder SM. Proliferation of endothelial and tumor epithelial cells by progestin-induced vascular endothelial growth factor from human breast cancer cells: paracrine and autocrine effects. Endocrinology. 2005;146:3632–41.

    PubMed  CAS  Google Scholar 

  40. Price DJ, Miralem T, Jiang S, Steinberg R, Avraham H. Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ. 2001;12:129–35.

    PubMed  CAS  Google Scholar 

  41. Buteau-Lozano H, Velasco G, Cristofari M, Balaguer P, Perrot-Applanat M. Xenoestrogens modulate vascular endothelial growth factor secretion in breast cancer cells through an estrogen receptor-dependent mechanism. J Endocrinol. 2008;196(2):399–412.

    PubMed  CAS  Google Scholar 

  42. Dadiani M, Seger D, Kreizman T, Badikhi D, Margalit R, Eilam R, Degani H. Estrogen regulation of vascular endothelial growth factor in breast cancer in vitro and in vivo: the role of estrogen receptor alpha and c-Myc. Endocr Relat Cancer. 2009;16:819–34.

    PubMed  CAS  Google Scholar 

  43. Hyder SM, Stancel GM, Chiappetta C, Murthy L, Boettger-Tong HL, Makela S. Uterine expression of vascular endothelial growth factor is increased by estradiol and tamoxifen. Cancer Res. 1996;56:3954–60.

    PubMed  CAS  Google Scholar 

  44. Hyder SM, Chiappetta C, Stancel GM. Pharmacological and endogenous progestins induce vascular endothelial growth factor expression in human breast cancer cells. Int J Cancer. 2001;92:469–73.

    PubMed  CAS  Google Scholar 

  45. Wu J, Brandt S, Hyder SM. Ligand- and cell-specific effects of signal transduction pathway inhibitors on progestin-induced vascular endothelial growth factor levels in human breast cancer cells. Mol Endocrinol. 2005;19:312–26.

    PubMed  CAS  Google Scholar 

  46. Axlund SD, Sartorius CA. Progesterone regulation of stem and progenitor cells in normal and malignant breast. Mol Cell Endocrinol. 2012;357:71–9.

    PubMed  CAS  Google Scholar 

  47. Lanari C, Molinolo AA. Progesterone receptors-Animal models and cell signaling in breast cancer. Diverse activation pathways for the progesterone receptor possible implications for breast biology and cancer. Breast Cancer Res. 2002;4:240–3.

    PubMed  CAS  Google Scholar 

  48. Hankinson SE, Eliassen AH. Circulating sex steroids and breast cancer risk in premenopausal women. Horm Cancer. 2010;1:2–10.

    PubMed  CAS  Google Scholar 

  49. Gompel A, Malet C, Spritzer P, Lalardrie JP, Kuttenn F, Mauvais-Jarvis P. Progestin effect on cell proliferation and 17 beta-hydroxysteroid dehydrogenase activity in normal human breast cells in culture. J Clin Endocrinol Metab. 1986;63:1174–80.

    PubMed  CAS  Google Scholar 

  50. Rajkumar L, Kittrell FS, Guzman RC, Brown PH, Nandi S, Medina D. Hormone-induced protection of mammary tumorigenesis in genetically engineered mouse model. Breast Cancer Res. 2007;9:R12.

    PubMed  Google Scholar 

  51. Sivaraman L, Medina D. Hormone-induced protection against breast. J Mammary Gland Biol Neoplasia. 2002;7:77–92.

    PubMed  Google Scholar 

  52. Goepfert TM, McCarthy M, Kittrell FS, Stephens C, Ullrich RL, Brinkley BR, Medina D. Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells. FASEB J. 2000;14:2221–9.

    PubMed  CAS  Google Scholar 

  53. Hyder SM, Murthry L, Stancel GM. Progestin regulation of vascular endothelial growth factor in human breast cancer cells. Cancer Res. 1998;58:392–5.

    PubMed  CAS  Google Scholar 

  54. Mirkin S, Wong BC, Archer DF. Effect of 17 beta-estradiol, progesterone, synthetic progestins, tibolone, and tibolone metabolites on vascular endothelial growth factor mRNA in breast cancer cells. Fertil Steril. 2005;84:485–91.

    PubMed  CAS  Google Scholar 

  55. Mirkin S, Wong BC, Archer DF. Effects of 17beta-estradiol, progesterone, synthetic progestins, tibolone, and raloxifene on vascular endothelial growth factor and Thrombospondin-1 messenger RNA in breast cancer cells. Int J Gynecol Cancer. 2006;16 Suppl 2:560–3.

    PubMed  Google Scholar 

  56. Chlebowski RT, Hendrix SI, Langer RD, Stefanick MI, et al. Influence of estrogen plus progestin on breast cancer mammography in healthy postmenopausal women. The Women’s Health Initiative Random Trial. JAMA. 2003;289:3243–53.

    PubMed  CAS  Google Scholar 

  57. Chlebowski RT, Anderson GL. Changing concepts: menopausal hormone therapy and breast cancer. J Natl Cancer Inst. 2012;104:517–27.

    PubMed  CAS  Google Scholar 

  58. Lange CA, Richer JK, Horwitz KB. Hypothesis: progesterone primes breast cancer cells for cross-talk with proliferative or antiproliferative signals. Mol Endocrinol. 1999;13:829–36.

    PubMed  CAS  Google Scholar 

  59. De Lignières B. Effects of progestogens on the postmenopausal breast. Climacteric. 2002;5:229–35.

    PubMed  Google Scholar 

  60. Raafat AM, Hofseth LJ, Haklan SZ. Proliferative effects of combination estrogen and progesterone replacement therapy on the normal postmenopausal gland in a murine model. Am J Obstet Gynecol. 2001;183:1–14.

    Google Scholar 

  61. Soderqvist G, Isaksson E, Von Schoultz B, Carlstrom K, Tani E, Skoog L. Proliferation of breast epithelial cells in healthy women during the menstrual cycle. Am J Obstet Gynecol. 1997;176:123–8.

    PubMed  CAS  Google Scholar 

  62. Saether S, Bakken K, Lund E. The risk of breast cancer linked to menopausal hormone therapy. Tidsskr Nor Laegeforen. 2012;132:1330–4.

    PubMed  Google Scholar 

  63. Gonzalez-Suarez E, Jacob AP, Jones J, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468:103–7.

    PubMed  CAS  Google Scholar 

  64. Schramek D, Leibbrandt A, Sigl V, et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468:98–102.

    PubMed  CAS  Google Scholar 

  65. Kariagina A, Xie J, Leipprandt JR, Haslam SZ. Amphiregulin mediates estrogen, progesterone and EGFR signaling in the normal rat mammary gland and in hormone-dependent rat mammary cancers. Horm Cancer. 2010;1:229–44.

    PubMed  CAS  Google Scholar 

  66. Carvajal A, Espinoza N, Kato S, Pinto M, Sadarangani A, Monso C, et al. Progesterone pre-treatment potentiates EGF pathway signaling in the breast cancer cell line ZR-75. Breast Cancer Res Treat. 2005;94:171–83.

    PubMed  CAS  Google Scholar 

  67. Aldaz CM, Liao QY, LaBate M, Johnston DA. Medroxyprogesterone acetate accelerates the development and increases the incidence of mouse mammary tumors induced by dimethylbenzanthracene. Carcinogenesis. 1996;17:2069–72.

    PubMed  CAS  Google Scholar 

  68. Blank EW, Wong PY, Lakshmanaswamy R, Guzman R, Nandi S. Both ovarian hormones estrogen and progesterone are necessary for hormonal mammary carcinogenesis in ovariectomized ACI rats. Proc Natl Acad Sci USA. 2008;105:3527–32.

    PubMed  CAS  Google Scholar 

  69. Lanari C, Luthy I, Lamb CA, Fabris V, et al. Five novel hormone-responsive cell lines derived from murine mammary ductal carcinomas: In vivo and in vitro effects of estrogens and progestins. Cancer Res. 2001;61:293–302.

    PubMed  CAS  Google Scholar 

  70. Horwitz KB, Sartorius CA. Progestins in hormone replacement therapies re-activate cancer stem cells in women with preexisting breast cancers: a hypothesis. J Clin Endocrinol Metab. 2008;93:3295–8.

    PubMed  CAS  Google Scholar 

  71. Groshong SD, Owen GI, Grimison B, Schauer IE, et al. Biphasic regulation of breast cancer cell growth by progesterone: role of the cyclin-dependent kinase inhibitors, p21 and p27 (kip1). Mol Endocrinol. 1997;11:1593–607.

    PubMed  CAS  Google Scholar 

  72. Matsubara Y, Matsubara K. Estrogen and progesterone play pivotal roles in endothelial progenitor cell proliferation. Reprod Biol Endocrinol. 2012;10:2–11.

    PubMed  CAS  Google Scholar 

  73. Perou CM, Sortlie T, Eisen MB, Van de Rijn M, et al. Molecular portraits of human breast tumors. Nature. 2000;406:747–52.

    PubMed  CAS  Google Scholar 

  74. Krämer EA, Seeger H, Krämer B, Wallwiener D, Mueck AO. The effect of progesterone, testosterone and synthetic progestogens on growth factor- and estradiol-treated human cancerous and benign breast cells. Eur J Obstet Gynecol Reprod Biol. 2006;129:77–83.

    PubMed  Google Scholar 

  75. Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, Van Zwieten MJ. Comparative study of human and rat mammary tumorigenesis. Lab Invest. 1990;62:244–78.

    PubMed  CAS  Google Scholar 

  76. Taylor D, Pearce CL, Hovanessian-Larsen L, Downey S, Spicer DV, Bartow S, Pike MC, Wu AH, Hawes D. Progesterone and estrogen receptors in pregnant and premenopausal non-pregnant normal human breast. Breast Cancer Res Treat. 2009;118:161–8.

    PubMed  CAS  Google Scholar 

  77. Sartorius CA, Harvell DM, Shen T, Horwitz KB. Progestins initiate a luminal to myoepithelial switch in estrogen-dependent human breast tumors without altering growth. Cancer Res. 2005;65:9779–88.

    PubMed  CAS  Google Scholar 

  78. Check JH, Dix E, Wilson C, Check D. Progesterone receptor antagonist therapy has therapeutic potential even in cancer restricted to males as evidenced from murine testicular and prostate cancer studies. Anticancer Res. 2010;30:4921–3.

    PubMed  CAS  Google Scholar 

  79. Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997;390:404–7.

    PubMed  CAS  Google Scholar 

  80. Carroll CE, Benakanakere I, Besch-Williford C, Ellersierck MR, Hyder SM. Curcumin delays development of medroxyprogesterone acetate-accelerated 7,12-dimethybenz(a)anthracene-induced mammary tumors. Menopause. 2010;17:178–84.

    PubMed  Google Scholar 

  81. Shehzad A, Khan S, Sup Lee Y. Curcumin molecular targets in obesity and obesity-related cancers. Future Oncol. 2012;8:179–90.

    PubMed  CAS  Google Scholar 

  82. Sintara K, Thong-Ngam D, Patumraj S, Klaikeaw N. Curcumin attenuates gastric cancer induced by N-methyl-N-nitrosourea and saturated sodium chloride in rats. J Biomed Biotechnol. 2012;2012:915380.

    PubMed  Google Scholar 

  83. Binion DG, Otterson MF, Rafiee P. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut. 2008;57:1509–17.

    PubMed  CAS  Google Scholar 

  84. Darvesh AS, Carroll RT, Bishayee A, Novotny NA, Geldenhuys WJ, Van der Schyf CJ. Curcumin and neurodegenerative diseases: a perspective. Expert Opin Investig Drugs. 2012;21:1123–40.

    PubMed  CAS  Google Scholar 

  85. Zava DT, Dollbaum CM, Blen M. Estrogen and progestin bioactivity of foods, herbs, and spices. Proc Soc Exp Biol Med. 1998;217:369–78.

    PubMed  CAS  Google Scholar 

  86. Carroll CE, Ellersieck MR, Hyder SM. Curcumin inhibits MPA-induced secretion of VEGF from T47-D human breast cancer cells. Menopause. 2008;15:570–4.

    PubMed  Google Scholar 

  87. Simon JA. Introduction: an overview of progesterone and progestins. Suppl J Fam Pract. 2007; 3–5.

    Google Scholar 

  88. Patel D, Shukla S, Gupta S. Apigenin and cancer chemoprevention: progress, potential and promise. Int J Oncol. 2007;30:233–45.

    PubMed  CAS  Google Scholar 

  89. Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res. 2010;27:962–78.

    PubMed  CAS  Google Scholar 

  90. Mafuvadze B, Benakanakere I, Hyder SM. Apigenin blocks induction of VEGF mRNA and protein in progestin-treated human breast cancer cells. Menopause. 2010;17:1055–63.

    PubMed  Google Scholar 

  91. Fang J, Zhou Q, Liu L, et al. Apigenin inhibits tumor angiogenesis through decreasing HIF-1α and VEGF expression. Carcinogenesis. 2007;28:858–64.

    PubMed  CAS  Google Scholar 

  92. Mafuvadze B, Benakanakere I, Lopez Perez FR, Besch-Williford C, Ellersieck MR, Hyder SM. Apigenin prevents development of medroxyprogesterone acetate-accelerated 7,12-Dimethylbenz(a)anthracene-induced mammary tumors in Sprague-Dawley rats. Cancer Prev Res. 2011;4:1316–24.

    CAS  Google Scholar 

  93. Gupta S, Afaq F, Mukhtar H. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun. 2001;287:914–20.

    PubMed  CAS  Google Scholar 

  94. Mafuvadze B, Liang Y, Besch-Williford C, Hyder SM. Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors. Horm Cancer. 2012;3:160–71.

    PubMed  CAS  Google Scholar 

  95. Liang Y, Besch-Williford C, Hyder SM. PRIMA-1 inhibits growth of breast cancer cells by re-activating mutant p53. Int J Oncol. 2009;35:1015–23.

    PubMed  CAS  Google Scholar 

  96. Bartek J, Bartkova J, Vojtesek B, Staskova Z, Rejthar A, Kovarik J, Lane DP. Patterns of expression of the p53 tumor suppressor in human breast tissues and tumors in situ and in vitro. Int J Cancer. 1990;46:839–44.

    PubMed  CAS  Google Scholar 

  97. Bottini A, Berruti A, Bersiga A, Brizzi MP, Brunelli A, et al. p53 but not bcl-2 immunostaining is predictive of poor clinical complete response to primary chemotherapy in breast cancer patients. Clin Cancer Res. 2000;6:2751–8.

    PubMed  CAS  Google Scholar 

  98. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature. 1989;342:705–8.

    PubMed  CAS  Google Scholar 

  99. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–31.

    PubMed  CAS  Google Scholar 

  100. Munagala R, Aqil F, Gupta RC. Promising molecular targeted therapies in breast cancer. Ind J Pharmacol. 2011;43:236–45.

    CAS  Google Scholar 

  101. Liang Y, Besch-Williford C, Benakanakere I, Thorpe PE, Hyder SM. Targeting mutant p53 protein and the tumor vasculature: an effective combination therapy for advanced breast tumors. Breast Cancer Res Treat. 2011;125:407–20.

    PubMed  CAS  Google Scholar 

  102. McVean M, Xiao H, Isobe K, Pelling JC. Increase in wild-type p53 stability and transactivation activity by the chemoprevention agent apigenin in keratinocytes. Carcinogenesis. 2000;21:633–9.

    PubMed  CAS  Google Scholar 

  103. Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 2006;3(1):24–40.

    PubMed  CAS  Google Scholar 

  104. Jain RK. Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park). 2005;19(4 Suppl 3):7–16.

    Google Scholar 

  105. Blagosklonny MV. Antiangiogenic therapy and tumor progression. Cancer Cell. 2004;5:13–7.

    PubMed  CAS  Google Scholar 

  106. Cao Y. Antiangiogenic cancer therapy: why do mouse and human patients respond in a different way to the same drug? Int J Dev Biol. 2011;55:557–62.

    PubMed  CAS  Google Scholar 

  107. Zuniga RM, Torcuator R, Jain R, Anderson J, Doyle T, Schultz L, Mikkelsen T. Rebound tumour progression after the cessation of bevacizumab therapy in patients with recurrent high-grade glioma. J Neurooncol. 2010;99:237–42.

    PubMed  CAS  Google Scholar 

  108. Tie J, Desai J. Antiangiogenic therapies targeting the vascular endothelia growth factor signaling system. Crit Rev Oncog. 2012;17:51–67.

    PubMed  Google Scholar 

  109. Baek JH, Jang JE, Kang CM, Chung HY, Kim ND, Kim KW. Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene. 2000;19:4621–31.

    PubMed  CAS  Google Scholar 

  110. Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett. 2012;320:130–7.

    PubMed  CAS  Google Scholar 

  111. Wu JM, Staton CA. Anti-angiogenic drug discovery: lessons from the past and thoughts for the future. Expert Opin Drug Discov. 2012;7:723–43.

    PubMed  CAS  Google Scholar 

  112. Shigetomi H, Higashiura Y, Kajihara H, Kobayashi H. Targeted molecular therapies for ovarian cancer: an update and future perspectives (Review). Oncol Rep. 2012;28:395–408.

    PubMed  CAS  Google Scholar 

  113. Wang Z, Sun Y. Targeting p53 for novel anticancer therapy. Transl Oncol. 2010;3:1–12.

    PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the talented individuals in the lab, both past and present, who have been instrumental in obtaining the exciting data reported herein. These include Drs. Yayun Liang, Indira Benakanakere, Candace Carroll, and Jianbo Wu. We are also grateful to various collaborators for their contribution, in particular Dr. George Stancel (Univ. of Texas, Houston), in whose laboratory SMH began his research on hormones and angiogenesis, and Drs. Rolf Brekken and Philip Thorpe (UT Southwestern, Dallas, TX) who provided the anti-vascular antibodies for use in these studies. We also wish to thank the lab staff at RADIL/IDDEX for help with the immunohistochemical analysis.

Funding

The following sources are acknowledged for supporting our laboratory studies: NIH grants CA-86916 and R56-CA86916, the Susan G. Komen Breast Cancer Foundation, Dept of Defense breast cancer awards (W81XWH-05-1-0416, W81XWH-06-1-0646 and W81XWH-12-1-0191), and COR grants from the College of Veterinary Medicine at the University of Missouri, Columbia. SMH is the Zalk Missouri Professor of Tumor Angiogenesis. Mrs. Zalk’s bequest has been instrumental in allowing us to make key discoveries related to the role of progestins and angiogenic growth factors in breast cancer. The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman M. Hyder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hyder, S.M., Mafuvadze, B., Besch-Williford, C. (2013). Novel Anti-angiogenic Therapies Using Naturally Occurring and Synthetic Drugs to Combat Progestin-Dependent Breast Cancer. In: Schatten, H. (eds) Cell and Molecular Biology of Breast Cancer. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-634-4_7

Download citation

Publish with us

Policies and ethics