Skip to main content

New Breast Cancer Treatment Considerations: A Brief Review of the Use of Genetically Modified (Attenuated) Bacteria as Therapy for Advanced and Metastatic Breast Cancer

  • Chapter
  • First Online:
Cell and Molecular Biology of Breast Cancer

Abstract

Breast cancer is still among the most common life-threatening cancers that affects one out of eight women, and it further affects a small percent of the male population. While early detection has been helpful to reduce the mortality rate, we currently still do not have cures for advanced and metastatic breast cancer. In recent years, new strategies have been proposed to treat breast cancers with poor prognosis by utilizing genetically modified bacteria, including Salmonella typhimurium, that preferentially replicate within solid tumors (1,000:1 and up to 10,000:1 compared to noncancerous tissue) destroying cancer cells without causing septic shock that is typically associated with wild-type S. typhimurium infections. Furthermore, these bacteria have the potential to be utilized as drug delivery systems to more effectively target different subpopulations of breast tumor cells. This chapter reviews progress in using genetically modified S. typhimurium for destruction of breast cancer cells in culture and in solid breast cancer tissue. We discuss the potential and future prospects for applications in clinical trials as novel breast cancer therapy for advanced stages of the disease. We further discuss potential combination therapies for optimal destruction of breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coley WB. Late results of the treatment of inoperable sarcoma by the mixed toxins of Erysipelas and Bacillus prodigosus. Am J Med Sci. 1906;131:375–430.

    Google Scholar 

  2. Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, MD, reviewed in the light of modern research. Cancer Res. 1946;6:205–16.

    PubMed  CAS  Google Scholar 

  3. Hall SS. A commotion in the blood: life, death, and the immune system. New York: Henry Holt; 1997.

    Google Scholar 

  4. Coley WB. Contribution to the knowledge of sarcoma. Ann Surg. 1981;14:199–220.

    Article  Google Scholar 

  5. Loeffler M, Le’Negrate G, Krajewska M, Reed JC. Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci USA. 2007;104:12879–83.

    Article  PubMed  CAS  Google Scholar 

  6. Fensterle J, Bergmann B, Yone CL, Hotz C, Meyer SR, Spreng S, Goebel W, Rapp UR, Gentschev I. Cancer immunotherapy based on recombinant Salmonella enterica serovar Typhimurium aroA strains secreting prostate-specific antigen and cholera toxin subunit B. Cancer Gene Ther. 2008;15:85–93.

    Article  PubMed  CAS  Google Scholar 

  7. Parker RC, Plummer HC, Siebenmann CO, Chapman MG. Effect of histolyticus infection and toxin on transplantable mouse tumors. Proc Soc Exp Biol Med. 1947;66:461–7.

    Article  PubMed  CAS  Google Scholar 

  8. Malmgren RA, Flanigan CC. Localization of the vegetative form of Clostridium tetani in mouse tumor following intravenous spore administration. Cancer Res. 1955;15:473–8.

    PubMed  CAS  Google Scholar 

  9. Mottram JC. Factors of importance in radiosensitivity of tumors. Br J Radiol. 1936;9:606–14.

    Article  Google Scholar 

  10. Carey RW, Holland JF, Whang HY, Neter E, Bryant B. Clostridial oncolysis in man. Eur J Cancer. 1967;3:37–46.

    Article  Google Scholar 

  11. Pawelek JM, Low KB, Bermudes D. Tumor targeted Salmonella as a novel anticancer vector. Cancer Res. 1997;57:4537–44.

    PubMed  CAS  Google Scholar 

  12. Yu YA, Shabahang S, Timiryasova TM, Zhang Q, Beltz R, Gentschev I, Goebel W, Szalay AA. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol. 2004;22:313–20.

    Article  PubMed  CAS  Google Scholar 

  13. Kohwi Y, Imai K, Tamura Z, Hashimoto Y. Antitumor effect of Bifidobacterium infantis in mice. Gann. 1978;69:613–8.

    PubMed  CAS  Google Scholar 

  14. Bhatnagar PK, Awasthi A, Nomellini JF, Smit J, Suresh MR. Anti-tumor effects of the bacterium caulobacter crescentus in murine tumor models. Cancer Biol Ther. 2006;5:485–91.

    Article  PubMed  CAS  Google Scholar 

  15. Pan ZK, Weiskirch LM, Paterson Y. Regression of established B16F10 melanoma with a recombinant Listeria monocytogenes vaccine. Cancer Res. 1999;59:5264–9.

    PubMed  CAS  Google Scholar 

  16. Kim SH, Castro F, Paterson Y, Gravekamp C. High efficacy of a Listeria-based vaccine against metastatic breast cancer reveals a dual mode of action. Cancer Res. 2009;69:5860–6.

    Article  PubMed  CAS  Google Scholar 

  17. Arakawa M, Sugiura K, Reilly HC, Stock CC. Oncolytic effect of Proteus mirabilis upon tumor bearing animals. II. Effect on transplantable mouse and rat tumors. Gann. 1968;59:117–22.

    PubMed  CAS  Google Scholar 

  18. Maletzki C, Linnebacher M, Kreikemeyer B, Emmrich J. Pancreatic cancer regression by intratumoural injection of live Streptococcus pyogenes in a syngeneic mouse model. Gut. 2008;57:483–91.

    Article  PubMed  CAS  Google Scholar 

  19. Forbes NS, Munn LL, Fukumura D, Jain RK. Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors. Cancer Res. 2003;63:5188–93.

    PubMed  CAS  Google Scholar 

  20. Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, Ash O, Carmichael E, Chakraborty A, Fischer J, Lin SL, Luo X, Miller SI, Zheng L, King I, Pawelek JM, Bermudes D. Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor targeting in vivo. Nat Biotechnol. 1999;17:37–41.

    PubMed  CAS  Google Scholar 

  21. Schatten H, Eisenstark A. Destruction of human breast cancer cells by tumor-targeted Salmonella. World and Ehrlich Conference on Magic Bullets. Germany: Nürnberg; 2004.

    Google Scholar 

  22. Schatten H, Fea A, French W, Eisenstark A. Breast tumor targeting with genetically altered Salmonella. Microsc Microanal. 2005; 11(Suppl S02):932–3.

  23. Eisenstark A, Kazmierczak RA, Fea A, Khreis R, Newman D, Schatten H. Development of Salmonella strains as cancer therapy agents and testing in tumor cell lines. In: Schatten H, Eisenstark A, editors. Methods in molecular biology, vol. 253: Salmonella protocols. Totowa, NJ: Humana; 2007. p. 321–53.

    Google Scholar 

  24. Zhong Z, Kazmierczak RA, Fea A, Khreis R, Eisenstark A, Schatten H. Salmonella-host cell interactions, changes in host cell architecture, and destruction of prostate tumor cells with genetically altered Salmonella. Microsc Microanal. 2007;13(5):372–83.

    Article  PubMed  CAS  Google Scholar 

  25. Bermudes D, Low KB, Pawelek J, Feng M, Belcourt M, Zheng LM, King I. Tumour-selective Salmonella based cancer therapy. Biotechnol Genet Eng Rev. 2001;18:219–33.

    Article  PubMed  CAS  Google Scholar 

  26. Bermudes D, Zheng LM, King IC. Live bacteria as anticancer agents and tumor-selective protein delivery vectors. Curr Opin Drug Discov Devel. 2002;5:194–9.

    PubMed  CAS  Google Scholar 

  27. Pawelek JM, Sodi S, Chakraborty AK, Platt JT, Miller S, Holden DW, Hensel M, Low KB. Salmonella pathogenicity island-2 and anticancer activity in mice. Cancer Gene Ther. 2002;9:813–8.

    Article  PubMed  CAS  Google Scholar 

  28. Pawelek JM, Low KB, Bermudes D. Bacteria as tumour-targeting vectors. Lancet Oncol. 2003;4:548–56.

    Article  PubMed  Google Scholar 

  29. Chakrabarty AM. Microorganisms and cancer: quest for a therapy. J Bacteriol. 2003;185: 2683–6.

    Article  PubMed  CAS  Google Scholar 

  30. Saltzman DA. Cancer immunotherapy based on the killing of Salmonella typhimurium-infected tumour cells. Expert Opin Biol Ther. 2005;5:443–9.

    Google Scholar 

  31. Zhao M, Yang M, Ma HY, Li XM, Tan XY, Li SK, Yang ZJ, Hoffman RM. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res. 2006;66:7647–52.

    Article  PubMed  CAS  Google Scholar 

  32. Yu B, Yang M, Shi L, Yao Y, Jiang Q, Li X, Tang LH, Zheng BJ, Yuen KY, Smith DK, Song E, Huang JD. Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain. Sci Rep. 2012;2:436.

    PubMed  Google Scholar 

  33. Lee CH, Wu CL, Shiau AL. Salmonella choleraesuis as an anticancer agent in a syngeneic model of orthotopic hepatocellular carcinoma. Int J Cancer. 2008;122:930–5.

    Article  PubMed  CAS  Google Scholar 

  34. Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM, Topalian SL, Yang JC, Stock F, Freezer LJ, Morton KE, Seipp C, Haworth L, Mavroukakis S, White D, MacDonald S, Mao J, Sznol M, Rosenberg SA. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002;20:142–52.

    Article  PubMed  Google Scholar 

  35. Thamm DH, Kurzman ID, King I, Li ZJ, Sznol M, Dubielzig RR, Vail DM, MacEwen EG. Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to dogs with spontaneous neoplasia: phase I evaluation. Clin Cancer Res. 2005;11:4827–34.

    Article  PubMed  CAS  Google Scholar 

  36. Leschner S, Westphal K, Dietrich N, Viegas N, Jablonska J, Lyszkiewicz M, Lienenklaus S, Falk W, Gekara N, Loessner H, Weiss S. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-α. PLoS One. 2009;4:e6692.

    Article  PubMed  Google Scholar 

  37. Kasinskas RW, Forbes NS. Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol Bioeng. 2006;94:710–21.

    Article  PubMed  CAS  Google Scholar 

  38. Kasinskas RW, Forbes NS. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res. 2007;67:3201–9.

    Article  PubMed  CAS  Google Scholar 

  39. Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li SK, Xu MX, Penman S, Hoffman RM. Tumor targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA. 2005;102:755–60.

    Article  PubMed  CAS  Google Scholar 

  40. Sznol M, Lin SL, Bermudes D, Zheng LM, King I. Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest. 2000;105:1027–30.

    Article  PubMed  CAS  Google Scholar 

  41. Jain RK. The next frontier of molecular medicine: delivery of therapeutics. Nat Med. 1998;4:655–7.

    Article  PubMed  CAS  Google Scholar 

  42. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989;49:6449–65.

    PubMed  CAS  Google Scholar 

  43. Toley BJ, Forbes NS. Motility is critical for effective distribution and accumulation of bacteria in tumor tissue. Integr Biol (Camb). 2012;4(2):165–76.

    Article  CAS  Google Scholar 

  44. Nguyen VH, Kim HS, Ha JM, Hong Y, Choy HE, Min J-J. Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer. Cancer Res. 2010;70:18–23.

    Article  PubMed  CAS  Google Scholar 

  45. Jiang SN, Phan TX, Nam TK, Nguyen VH, Kim HS, Bom HS, Choy HE, Hong Y, Min JJ. Inhibition of tumor growth and metastasis by a combination of Escherichia coli mediated cytolytic therapy and radiotherapy. Mol Ther. 2010;18(3):635–42.

    Article  PubMed  CAS  Google Scholar 

  46. Ryan RM, Green J, Williams PJ, Tazzyman S, Hunt S, Harmey JH, Kehoe SC, Lewis CE. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 2009;16:329–39.

    Article  PubMed  CAS  Google Scholar 

  47. Loeffler M, Le’Negrate G, Krajewska M, Reed JC. Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth. Cancer Immunol Immunother. 2009;58:769–75.

    Article  PubMed  CAS  Google Scholar 

  48. Gentschev I, Fensterle J, Schmidt A, Potapenko T, Troppmair J, Goebel W, Rapp UR. Use of a recombinant Salmonella enterica serovar Typhimurium strain expressing C-Raf for protection against CRaf induced lung adenoma in mice. BMC Cancer. 2005;5:15.

    Article  PubMed  Google Scholar 

  49. Ganai S, Arenas RB, Forbes NS. Tumour targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br J Cancer. 2009;101:1683–91.

    Article  PubMed  CAS  Google Scholar 

  50. Loeffler M, Le’Negrate G, Krajewska M, Reed JC. Inhibition of tumor growth using Salmonella expressing Fas ligand. J Natl Cancer Inst. 2008;100:1113–6.

    Article  PubMed  CAS  Google Scholar 

  51. Theys J, Nuyts S, Landuyt W, Van Mellaert L, Dillen C, Bohringer M, Durre P, Lambin P, Anne J. Stable Escherichia coliClostridium acetobutylicum shuttle vector for secretion of murine tumor necrosis factor α. Appl Environ Microbiol. 1999;65:4295–300.

    PubMed  CAS  Google Scholar 

  52. Nuyts S, Theys J, Landuyt W, van Mellaert L, Lambin P, Anne J. Increasing specificity of anti-tumor therapy: cytotoxic protein delivery by non-pathogenic clostridia under regulation of radio-induced promoters. Anticancer Res. 2001;21:857–61.

    PubMed  CAS  Google Scholar 

  53. Nuyts S, Van Mellaert L, Theys J, Landuyt W, Bosmans E, Anne J, Lambin P. Radio-responsive recA promoter significantly increases TNFα production in recombinant clostridia after 2 Gy irradiation. Gene Ther. 2001;8:1197–201.

    Article  PubMed  CAS  Google Scholar 

  54. Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10(11):785–94.

    Article  PubMed  CAS  Google Scholar 

  55. Hoffman RM, Zhao M. Whole-body imaging of bacterial infection and antibiotic response. Nat Protoc. 2006;1:2988–94.

    Article  PubMed  CAS  Google Scholar 

  56. Benoit MR, Mayer D, Barak Y, Chen IY, Hu W, Cheng Z, Wang SX, Spielman DM, Gambhir SS, Matin A. Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. Clin Cancer Res. 2009;15:5170–7.

    Article  PubMed  CAS  Google Scholar 

  57. Tjuvajev J, Blasberg R, Luo X, Zheng LM, King I, Bermudes D. Salmonella-based tumor-targeted cancer therapy: tumor amplified protein expression therapy (TAPETTM) for diagnostic imaging. J Control Release. 2001;74:313–5.

    Article  PubMed  CAS  Google Scholar 

  58. Soghomonyan SA, Doubrovin M, Pike J, Luo X, Ittensohn M, Runyan JD, Balatoni J, Finn R, Tjuvajev JG, Blasberg R, Bermudes D. Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther. 2005;12:101–8.

    Article  PubMed  CAS  Google Scholar 

  59. Brader P, Stritzker J, Riedl CC, Zanzonico P, Cai S, Burnazi EM, Ghani ER, Hricak H, Szalay AA, Fong Y, Blasberg R. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clin Cancer Res. 2008;14:2295–302.

    Article  PubMed  CAS  Google Scholar 

  60. Min JJ, Kim HJ, Park JH, Moon S, Jeong JH, Hong YJ, Cho KO, Nam JH, Kim N, Park YK, Bom HS, Rhee JH, Choy HE. Noninvasive real-time imaging of tumors and metastases using tumor-targeting light-emitting Escherichia coli. Mol Imaging Biol. 2008;10:54–61.

    Article  PubMed  Google Scholar 

  61. Mi JJ, Nguyen VH, Kim HJ, Hong YJ, Choy HE. Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc. 2008;3:629–36.

    Article  Google Scholar 

  62. Cheng CM, Lu YL, Chuang KH, Hung WC, Shiea J, Su YC, Kao CH, Chen BM, Roffler S, Cheng TL. Tumor-targeting prodrug-activating bacteria for cancer therapy. Cancer Gene Ther. 2008;15:393–401.

    Article  PubMed  CAS  Google Scholar 

  63. Chang WW, Kuan YD, Chen MC, Lin ST, Lee CH. Tracking of mouse breast cancer stem-like cells with Salmonella. Exp Biol Med. 2012;237:1189–96.

    Article  CAS  Google Scholar 

  64. Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev. 2008;60:1226–40.

    Article  PubMed  CAS  Google Scholar 

  65. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–7.

    Article  PubMed  CAS  Google Scholar 

  66. Porsch C, Zhang Y, Östlund Å, Damberg P, Ducani C, Malmström E, Nyström AM. In vitro evaluation of non-protein adsorbing breast cancer theranostics based on 19F-polymer containing nanoparticles. Part Part Syst Charact. 2013;2013:1–10.

    Google Scholar 

  67. MacDiarmid JA, Mugridge NB, Weiss JC, Phillips L, Burn AL, Paulin RP, Haasdyk JE, Dickson KA, Brahmbhatt VN, Pattison ST, James AC, Al Bakri G, Straw RC, Stillman B, Graham RM, Brahmbhatt H. Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell. 2007;11:431–45.

    Article  PubMed  CAS  Google Scholar 

  68. MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar K, Brahmbhatt VN, Phillips L, Pattison ST, Petti C, Stillman B, Graham RM, Brahmbhatt H. Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol. 2009;27:643–51.

    Article  PubMed  CAS  Google Scholar 

  69. Qian BJ, Yan F, Li N, Liu QL, Lin YH, Liu CM, Luo YP, Guo F, Li HZ. MTDH/AEG-1-based DNA vaccine suppresses lung metastasis and enhances chemosensitivity to doxorubicin in breast cancer. Cancer Immunol Immunother. 2011;60(6):883–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Cancer Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Schatten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kazmierczak, R.A., Dino, A., Eisenstark, A., Schatten, H. (2013). New Breast Cancer Treatment Considerations: A Brief Review of the Use of Genetically Modified (Attenuated) Bacteria as Therapy for Advanced and Metastatic Breast Cancer. In: Schatten, H. (eds) Cell and Molecular Biology of Breast Cancer. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-634-4_16

Download citation

Publish with us

Policies and ethics