Skip to main content

Stress and HPA Axis Dysfunction in Alzheimer’s Disease

  • Chapter
  • First Online:
Studies on Alzheimer's Disease

Abstract

Memory loss is the most prominent clinical aspect of Alzheimer’s disease (AD) but, as recent clinical evidence has been revealed, intervening when memory difficulties are already apparent does little to alter the morbidity and mortality of the disease. Therefore, risk factors that accelerate the development of AD have recently received tremendous interest. Among those risk factors, interrogation of stress hormones/glucocorticoids have been particularly impactful because stress is an inherent aspect of life and unavoidable. Heightened indices of stress in mid-life predict greater risk for AD in late-life, stress hormone dysregulation in the aged increases AD vulnerability and higher levels of circulating glucocorticoid in AD patients correlates with faster cognitive decline. However, despite this evidence, the precise mechanism linking glucocorticoids and stress hormone to AD remain elusive.

In this chapter, we provide an overview of the hypothalamus–pituitary–adrenal (HPA) axis, and how stress, dysregulation of stress hormones and HPA axis dysfunction are currently thought to play a role in AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguilera G. HPA axis responsiveness to stress: implications for healthy aging. Exp Gerontol. 2011;46:90–5.

    Article  PubMed  CAS  Google Scholar 

  2. Dorey R, Pierard C, Shinkaruk S, et al. Membrnae mineralocorticoid but not glucocorticoid receptors of the dorsal hippocampus mediate the rapid effects of corticosterone on memory retrieval. Neuropsychopharmacology. 2011;36:2639–49.

    Article  PubMed  CAS  Google Scholar 

  3. Landfield PW, Blalock EM, Chen KC, et al. A new glucocorticoid hypothesis of brain aging: implications for Alzheimer’s disease. Curr Alzheimer Res. 2007;4:205–12.

    Article  PubMed  CAS  Google Scholar 

  4. Symonds CS, McKie S, Elliott R, et al. Detection of the acute effects of hydrocortisone in the hippocampus using pharmacological fMRI. Eur Neuropsychopharmacol. 2012;22:867.

    Article  PubMed  CAS  Google Scholar 

  5. de Quervain DJ, Henke K, Aemi A, et al. Glucocorticoid-induced impairment of declarative memory retrieval is associated with reduced blood flow in the medial temporal lobe. Eur J Neurosci. 2003;12:1296–302.

    Article  Google Scholar 

  6. Oei NY, Elzinga BM, Wolf OT, et al. Glucocorticoids decrease hippocampal and prefrontal activation during declarative memory retrieval in young men. Brain Imaging Behav. 2007;1:31–41.

    Article  PubMed  Google Scholar 

  7. Coluccia D, Wolf OT, Kollias S, et al. Glucocorticoid therapy-induced memory deficits: acute versus chronic effects. J Neurosci. 2008;28:3474–8.

    Article  PubMed  CAS  Google Scholar 

  8. Barsegyan A, Mackenzie SM, Kurose BD, et al. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism. Proc Natl Acad Sci U S A. 2010;107:16655–60.

    Article  PubMed  CAS  Google Scholar 

  9. Kassem MS, Lagopoulos J, Stait-Gardner T, et al. Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses. Mol Neurobiol. 2013;47(2):645–61.

    Google Scholar 

  10. Arsenault-Lapierre G, Chertkow H, Lupien S. Seasonal effects on cortisol secretion in normal aging, mild cognitive impairment an Alzheimer’s disease. Neurobiol Aging. 2010;31:1051–4.

    Article  PubMed  CAS  Google Scholar 

  11. Rasmuson S, Nasman B, Carlstrom K, et al. Increased levels of adrenocortical and gonadal hormones in mild to moderate Alzheimer’s disease. Dement Geriatr Cogn Disord. 2002;13:74–9.

    Article  PubMed  CAS  Google Scholar 

  12. Csernansky JG, Dong H, Fagan AM, et al. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am J Psychiatry. 2006;163:2164–9.

    Article  PubMed  Google Scholar 

  13. Hoogendiik WJ, Meynen G, Endert E, et al. Increased cerebrospinal fluid cortisol level in Alzheimer’ disease is not related to depression. Neurobiol Aging. 2006;27:780.

    Google Scholar 

  14. Wilson RS, Schneider JA, Boyle PA, et al. Chronic distress and incidence of mild cognitive impairment. Neurology. 2007;68:2085–92.

    Article  PubMed  CAS  Google Scholar 

  15. Karlamangla AS, Singer BH, Chodosh J, et al. Increased cerebrospinal fluid cortisol level in Alzheimer’ disease is not related to depression. Neurobiol Aging. 2005;Suppl 1:80–4.

    Article  Google Scholar 

  16. Elgh E, Lindqvist A, Fagerlund M, et al. Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biol Psychiatry. 2006;59:155–61.

    Article  PubMed  CAS  Google Scholar 

  17. Aisen PS, Davis KL, Berg JD, et al. A randomized controlled trial of prednisone in Alzheimer’s disease. Alzheimer’s Disease Cooperative Study. Neurology. 2000;54:588–9.

    Article  PubMed  CAS  Google Scholar 

  18. Hu P, Oomen C, can Dam AM, et al. A single-day treatment with mifepristone is sufficient to normalize chronic glucocorticoid induced suppression of hippocampal cell proliferation. PLoS One. 2012;7:e46224.

    Article  PubMed  CAS  Google Scholar 

  19. Montaron MF, Drapeau E, Dupret D, et al. Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol Aging. 2006;27:645–54.

    Article  PubMed  CAS  Google Scholar 

  20. Jeong YH, Park CH, Yoo J, et al. Chronic stress accelerates learning and memory impairments and increases amyloid deposition in APPv717I-CT100 transgenic mice, an Alzheimer’s disease model. FASEB J. 2006;20:729–31.

    PubMed  CAS  Google Scholar 

  21. Carroll JC, Iba M, Bangasser DA, et al. Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotrophin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy. J Neurosci. 2011;31:14436–49.

    Article  PubMed  CAS  Google Scholar 

  22. Dong H, Yuede C, Yoo HS, et al. Corticosterone and related receptor expression are associated with increased beta-amyloid plaques in isolated Tg2576. Neuroscience. 2008;155:154–63.

    Article  PubMed  CAS  Google Scholar 

  23. Dong H, Goico B, Martin M, et al. Modulation of hippocampal cell proliferation, memory and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience. 2004;127(3):601–9.

    Article  PubMed  CAS  Google Scholar 

  24. Green KN, Billings LM, Roozendaal B, et al. Glucocorticoids increase amyloid- β and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci. 2006;265:9047–56.

    Article  Google Scholar 

  25. Lee KW, Kim JB, Seo JS, et al. Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 mice via generation of metabolic oxidative stress. J Neurochem. 2009;108:165–75.

    Article  PubMed  CAS  Google Scholar 

  26. Kang JE, Cirrito JR, Dong H, et al. Acute stress increases interstitial fluid amyloid-beta via corticotrophin-releasing factor and neuronal activity. Proc Natl Acad Sci U S A. 2007;104:10673.

    Article  PubMed  CAS  Google Scholar 

  27. Dong H, Murphy KM, Meng L, et al. Corticotrophin releasing factor accelerates neuropathology and cognitive decline in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2012;28:579–92.

    PubMed  CAS  Google Scholar 

  28. Ownby RL, Crocco E, Acevedo A, et al. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry. 2006;63:530–8.

    Article  PubMed  Google Scholar 

  29. Robert PH, Shuck S, Dubois B, et al. Validation of the short cognitive battery (B2C). Value in screening for Alzheimer’s disease and depressive disorders in psychiatric practice. Encéphale. 2003;29:266–72.

    PubMed  Google Scholar 

  30. Kessing LV, Andersen PK. Does the risk of developing dementia increase with the number of episodes in patients with depressive disorder and in patients with bipolar disorder? J Neurol Neurosurg Psychiatry. 2004;75:1662–6.

    Article  PubMed  CAS  Google Scholar 

  31. Barnes DE, Yaffe K, Byers AL, et al. Midlife vs late-life depressive symptoms and risk of dementia: differential effects for Alzheimer disease and vascular dementia. Arch Gen Psychiatry. 2012;69:493–8.

    Article  PubMed  Google Scholar 

  32. Richard E, Reitz C, Honig LH, et al. Late-life depression, mild cognitive impairment, and dementia. Arch Neurol. 2012;31:1–7.

    Google Scholar 

  33. Sexton CE, Mackay CE, Ebmeier KP. A systematic review and meta-analysis of magnetic resonance imaging studies in late-life depression. Am J Geriatr Psychiatry. 2013;21:184–95.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Praticò M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Joshi, Y.B., Praticò, D. (2013). Stress and HPA Axis Dysfunction in Alzheimer’s Disease. In: Praticὸ, D., Mecocci, P. (eds) Studies on Alzheimer's Disease. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-598-9_11

Download citation

Publish with us

Policies and ethics