Skip to main content

Introduction to Hydrology

  • Chapter
  • First Online:
Modern Water Resources Engineering

Abstract

Hydrology deals with the occurrence, movement, and storage of water in the earth system. Hydrologic science comprises understanding the underlying physical and stochastic processes involved and estimating the quantity and quality of water in the various phases and stores. The study of hydrology also includes quantifying the effects of such human interventions on the natural system at watershed, river basin, regional, country, continental, and global scales. The process of water circulating from precipitation in the atmosphere falling to the ground, traveling through a river basin (or through the entire earth system), and then evaporating back to the atmosphere is known as the hydrologic cycle. This introductory chapter includes seven subjects, namely, hydroclimatology, surface water hydrology, soil hydrology, glacier hydrology, watershed and river basin modeling, risk and uncertainty analysis, and data acquisition and information systems. The emphasis is on recent developments particularly on the role that atmospheric and climatic processes play in hydrology, the advances in hydrologic modeling of watersheds, the experiences in applying statistical concepts and laws for dealing with risk and uncertainty and the challenges encountered in dealing with nonstationarity, and the use of newer technology (particularly spaceborne sensors) for detecting and estimating the various components of the hydrologic cycle such as precipitation, soil moisture, and evapotranspiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gleick PH (1996) Water resources. In: Schneider SH (ed) Encyclopedia of climate and weather, vol 2. Oxford University Press, New York, pp 817–823

    Google Scholar 

  2. Cushman-Roisin B (1994) Introduction to geophysical fluid dynamics. Prentice Hall, p 320

    Google Scholar 

  3. Zhang C (2005) Madden-Julian oscillation. Rev Geophys 43 RG2003/2005

    Google Scholar 

  4. Maloney E, Hartmann DL (2000) Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Science 287(5460):2002–2004

    CAS  Google Scholar 

  5. Maloney E, Hartmann DL (2000) Modulation of eastern north Pacific hurricanes by the Madden–Julian oscillation. J Climate 13:1451–1460

    Google Scholar 

  6. Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300

    Google Scholar 

  7. Philander SG (1990) El Niño, La Niña, and the southern oscillation. Academic, p 293

    Google Scholar 

  8. Piechota TC, Dracup JA (1996) Drought and regional hydrologic variation in the United States: associations with El Niño-southern oscillation. Water Resour Res 32(5):1359–1373

    Google Scholar 

  9. Cayan DR, Redmond KT, Riddle LG (1999) ENSO and hydrologic extremes in the western United States. J Climate 12:2881–2893

    Google Scholar 

  10. Gray WM (1984) Atlantic seasonal hurricane frequency. Part I: El Niño and the 30 mb quasi-biennial oscillation influences. Mon Weather Rev 112:1649–1668

    Google Scholar 

  11. Richards TS, O’Brien JJ (1996) The effect of El Niño on U.S. landfalling hurricanes. Bull Am Meteorol Soc 77:773–774

    Google Scholar 

  12. Bove MC, Elsner JB, Landsea CW, Niu X, O’Brien JJ (1998) Effects of El Niño on U.S. landfalling hurricanes, revisited. Bull Am Meteorol Soc 79:2477–2482

    Google Scholar 

  13. Wolter K, Timlin MS (1993) Monitoring ENSO in COADS with a seasonally adjusted principal component index. In: Proceedings of the 17th climate diagnostics workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and the School of Meteor., Univ. of Oklahoma, pp 52–57

    Google Scholar 

  14. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific decadal climate oscillation with impacts on salmon. Bull Am Meteorol Soc 78:1069–1079

    Google Scholar 

  15. Minobe S (1997) A 50-70 year climatic oscillation over the North Pacific and North America. Geophys Res Lett 24:683–686

    Google Scholar 

  16. Xie S-P, Tanimoto Y (1998) A pan-Atlantic decadal climate oscillation. Geophys Res Lett 25:2185–2188

    Google Scholar 

  17. McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic Oceans influences on multidecadal drought frequency in the United States. Proc Natl Acad Sci U S A 101(12):4136–4141

    CAS  Google Scholar 

  18. Hare SR, Francis RC (1995) Climate change and salmon production in the Northeast Pacific Ocean. In: Beamish RJ (ed) Ocean climate and northern fish populations. Canadian special publication of fisheries and aquatic science, vol 121, pp 357–372

    Google Scholar 

  19. Bond NA, Harrison DE (2000) The Pacific decadal oscillation, air-sea interaction and central north Pacific winter atmospheric regimes. Geophys Res Lett 27(5):731–734

    Google Scholar 

  20. Hessl AE, McKenzie D, Schellhaas R (2004) Drought and Pacific decadal oscillation linked to fire occurrence in the inland Pacific northwest. Ecol Appl 14(2):425–442

    Google Scholar 

  21. Whitfield PH, Moore RD, Fleming S, Zawadzki A (2010) Pacific decadal oscillation and the hydroclimatology of western Canada: review and prospects. Can Water Resour J 35(1):1–28

    Google Scholar 

  22. Sutton RT, Hodson LR (2005) Atlantic forcing of north American and European summer climate. Science 309:115–118

    CAS  Google Scholar 

  23. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33 (no. L17712)

    Google Scholar 

  24. Shanahan TM, Overpeck JT, Anchukaitis KJ, Beck JW, Cole JE, Dettman DL, Peck JA, Scholz CA, King JW (2009) Atlantic forcing of persistent drought in west Africa. Science 324(5925):377–380

    CAS  Google Scholar 

  25. Bao J-W, Michelson SA, Nieman PJ, Ralph FM, Wilczak JM (2006) Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: their formation and connection with tropical moisture. Mon Weather Rev 134:1063–1080

    Google Scholar 

  26. Miller NL, Kim J, Hartman RK, Farrara J (1999) Downscaled climate and streamflow study of the Southwestern United States. J Am Water Resour Assoc 35:1525–1537

    Google Scholar 

  27. DWR (2006) Progress on incorporating climate change into management of California’s Water Resources, Technical memorandum report, California Department of Water Resources

    Google Scholar 

  28. DWR (2009) Using future climate projections to support water resources decision making in California, California climate change center report CEC-500-2009-052-F

    Google Scholar 

  29. Miller NL, Bashford KE, Strem E (2003) Potential impacts of climate change of California hydrology. J Am Water Resour Assoc 39:771–784

    Google Scholar 

  30. Mote PW, Clark M, Hamlet AF (2004) Variability and trends in mountain snowpack in western North America. In: Proceedings of the 16th symposium on global climate change. 85th Annual AMS meeting, Seattle, WA, January

    Google Scholar 

  31. Stewart IT, Cayan DR, Dettinger MD (2004) Changes in snowmelt runoff timing in western North America under a ‘business as usual’ climate change scenario. Clim Change 62:217–232

    Google Scholar 

  32. USBR (2007) Reclamation final environmental impact statement Colorado River interim guidelines for lower basin shortages and coordinated operations for lakes Powell and Mead, Appendix N analysis of hydrologic variability sensitivity, p 70

    Google Scholar 

  33. Thiessen AH (1911) Precipitation for large areas. Mon Weather Rev 39:1082–1084

    Google Scholar 

  34. Simanton JR, Osborn HB (1980) Reciprocal-distance estimate of point rainfall. ASCE J Hydraul Eng 106(HY7):1242–1246

    Google Scholar 

  35. Tabios G, Salas JD (1985) A comparative analysis of techniques for spatial interpolation of precipitation. Water Resour Bull 21(3):365–380

    Google Scholar 

  36. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  37. Woodall SL (1984) Rainfall interception losses from melaleuca forest in Florida. Research note SE-323. USDA Southeastern Forest Experimental Station Forest Resources Laboratory, Lehigh Acres, FL

    Google Scholar 

  38. Horton RE (1919) Rainfall interception. Mon Weather Rev 47:603–623

    Google Scholar 

  39. Brooks PN, Folliott PF, Gregersen HM, Thames JL (1991) Hydrology and management of watersheds. Iowa State University Press, Ames, IA

    Google Scholar 

  40. Helvey JD (1971) A summary of rainfall interception in certain conifers of North America. In: Biological effects in the hydrologic cycle. Proceedings of third inter. seminar for hydrology professors, West Lafayette, IN, Purdue University Agricultural Experiment Station, pp 103–113

    Google Scholar 

  41. Ramirez JA, Senarath SUS (2000) A statistical-dynamical parameterization of interception and land surface-atmosphere interactions. J Climate 13:4050–4063

    Google Scholar 

  42. Brutsaert W (2005) Hydrology—an introduction. Cambridge University Press, New York

    Google Scholar 

  43. Chang M (2002) Forest hydrology: an introduction to water and forests. CRC Press, Boca Raton, Fl

    Google Scholar 

  44. Helvey JD, Patrick JH (1965) Canopy and litter interception of rainfall by hardwoods of eastern United States. Water Resour Res 1:193–206

    Google Scholar 

  45. Sophocleous MA, Koelliker JK, Govindaraju RS, Birdie T, Ramireddygari SR, Perkins SP (1999) Integrated numerical modeling for basin-wide water management: the case of the Rattlesnake Creek Basin in south-central Kansas. J Hydrol 214:179–196

    Google Scholar 

  46. Viessman W, Lewis GL (2003) Introduction to hydrology, 5th edn. Prentice Hall, Upper Saddle River, NJ, p 612

    Google Scholar 

  47. Horton RE (1933) The role of infiltration in the hydrological cycle. Trans Am Geophys Union 14:446–460

    Google Scholar 

  48. Horton RE (1939) Analysis of runoff-plot experiments with varying infiltration capacity. Trans Am Geophys Union 20:693–711

    Google Scholar 

  49. Philip JR (1957) The theory of infiltration. Sorptivity and algebraic infiltration equations. Soil Sci 84:257–264

    Google Scholar 

  50. Philip JR (1969) The theory of infiltration. Adv Hydrosci 5:215–290

    Google Scholar 

  51. Green WH, Ampt GA (1911) Studies on soil physics, 1: the flow of air and water through soils. J Agric Sci 4:1–24

    Google Scholar 

  52. Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New York, p 572

    Google Scholar 

  53. SCS (Soil Conversation Service) (1985) SCS national engineering handbook. U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  54. SCS (Soil Conservation Service) (1986) Urban hydrology for small watersheds, technical release 55. U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  55. Schaake JC, Koren VI, Duan QY (1996) Simple water balance model for estimating runoff at different spatial and temporal scales. J Geophys Res 101(D3):7461–7475

    Google Scholar 

  56. Yu B (1998) Theoretical justification of SCS method for runoff estimation. ASCE J Irrigat Drain Eng 124(6):306–310

    Google Scholar 

  57. SCS (Soil Conservation Service) (1993) SCS national engineering handbook, section 4, hydrology. U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  58. Eagleson P (1970) Dynamic hydrology. McGraw Hill Book, New York

    Google Scholar 

  59. Bras RE (1990) Hydrology: an introduction to hydrologic science. Addison and Wesley Publishing, Reading, MA, pp 197–198

    Google Scholar 

  60. Linsley RK, Kohler MA, Paulhus JLH (1986) Hydrology for engineers. McGraw Hill Book, New York

    Google Scholar 

  61. Anderson ER, Anderson LJ, Marciano JJ (1950) A review of evaporation theory and development of instrumentation, Lake Mead water loss investigation; interim report, Navy Electronics Lab. Rept. no. 159, February

    Google Scholar 

  62. Meyer AF (1944) Evaporation from lakes and reservoirs. Minnesota Resources Commission, St. Paul

    Google Scholar 

  63. Harbeck GE (1958) Water loss investigations: lake mead studies. U.S. Geological Survey professional paper 298, pp 29–37

    Google Scholar 

  64. Phillips DW (1978) Evaluation of evaporation from Lake Ontario during IFYGL by a modified mass transfer equations. Water Resour Res 14(2):196–205

    Google Scholar 

  65. Dunne T (1978) Field studies of hillslope flow processes. In: Kirkby MJ (ed) Hillslope hydrology. Wiley-Interscience, New York, pp 227–293

    Google Scholar 

  66. Penman HL (1956) Estimating evaporation. Trans Am Geophys Union 37(1):43–50

    Google Scholar 

  67. Monteith JL (1965) Evaporation and environment. In: Proceedings of the 19th symp. of the society for experimental biology, Cambridge University Press, New York, pp 205–233

    Google Scholar 

  68. Brutsaert W, Stricker H (1979) An advection-aridity approach to estimate actual regional evapotranspiration. Water Resour Res 15:443–450

    Google Scholar 

  69. Parlange MB, Katul GG (1992) An advection-aridity evaporation model. Water Resour Res 28:127–132

    Google Scholar 

  70. Ramirez JA, Hobbins MT, Brown TC (2005) Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet’s hypothesis. Geophys Res Lett 32(L15401):4

    Google Scholar 

  71. Haan CT, Johnson HP, Brakensiek DC (1982) Hydrologic modeling of small watersheds. Am Soc Agricult Eng Monograph no. 5

    Google Scholar 

  72. Allen RG, Walter IA, Elliott RL, Howell TA, Itenfisu D, Jensen ME, Snyder RL (2005) The ASCE standardized reference evapotranspiration equation. Task Committee of the EWRI, ASCE, Virginia

    Google Scholar 

  73. Allen RG (2011) REF-ET: reference evapotranspiration calculation software for FAO and ASCE standardized equations, version 3.1 for windows. University of Idaho, Kimberly, ID

    Google Scholar 

  74. Blaney HF, Criddle WD (1950) Determining water requirements in irrigated areas from climatological and irrigation data. U.S.D.A. soil conservation service, technical document no. 96, p 44

    Google Scholar 

  75. Allen RG, Pruitt WO (1985) Rational use of the FAO Blaney-Criddle formula. ASCE J Irrigat Drain Eng 112(2):139–155

    Google Scholar 

  76. Andales AA, Chavez JL, Bauder TA (2011) Irrigation scheduling: the water balance approach, Fact Sheet N. 4.707, Colorado State University Extension

    Google Scholar 

  77. Betson RP (1964) What is watershed runoff? J Geophys Res 69:1541–1551

    Google Scholar 

  78. Dunne T, Black RD (1970) Partial area contributions to storm runoff in a small New England watershed. Water Resour Res 6:1296–1311

    Google Scholar 

  79. Beven K (1978) The hydrological response of headwater and sideslope areas. Hydrol Sci Bull 23:419–437

    Google Scholar 

  80. Govindaraju RS, Kavvas ML (1991) Dynamics of moving boundary overland flows over infiltrating surfaces at hillslopes. Water Resour Res 27(8):1885–1898

    Google Scholar 

  81. Smith RE, Hebbert RHB (1979) A Monte Carlo analysis of the hydrologic effects of spatial variability of infiltration. Water Resour Res 15(2):419–429

    Google Scholar 

  82. Corradini C, Morbidelli R, Melone F (1998) On the interaction between infiltration and Hortonian runoff. J Hydrol 204:52–67

    Google Scholar 

  83. Nahar N, Govindaraju RS, Corradini C, Morbidelli R (2004) Role of run-on for describing field-scale infiltration and overland flow over spatially variable soils. J Hydrol 286:36–51

    Google Scholar 

  84. Govindaraju RS, Corradini C, Morbidelli R, Nahar N (2006) Infiltration and runon under spatially variable hydrologic properties. In: Delleur JW (ed) The handbook of groundwater engineering. CRC Press, pp 8.1–8.16

    Google Scholar 

  85. Morbidelli R, Govindaraju RS, Corradini C, Flammini A (2008) A simplified model for simulating basin-scale surface runoff hydrographs. ASCE J Hydrolog Eng 13(3):164–170

    Google Scholar 

  86. Stillman JS, Haws NW, Govindaraju RS, Rao PSC (2006) A model for transient flow to a subsurface tile drain under macropore-dominated flow conditions. J Hydrol 317:49–62

    Google Scholar 

  87. Hewlett JD, Hibbert AR (1963) Moisture and energy conditions within a sloping soil mass during drainage. J Geophys Res 68(4):1081–1087

    Google Scholar 

  88. SSSA (2009) Soils sustain life. https://www.agronomy.org/files/membership/ambassadors/sssa-brochure-2009.pdf

  89. Senese FA (2010) Frostburge State University. http://antoine.frostburg.edu/chem/senese/101/liquids/faq/print-h-bonding-vs-london-forces.shtml

  90. Mualem Y (1976) New model for predicting hydraulic conductivity of unsaturated porous-media. Water Resour Res 12(3):513–522

    Google Scholar 

  91. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Google Scholar 

  92. Gardner WR (1958) Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci 85:228–232

    Google Scholar 

  93. Rucker DF, Warrick AW, Ferre TPA (2005) Parameter equivalence for the Gardner and van Genuchten soil hydraulic conductivity functions for steady vertical flow with inclusions. Adv Water Resour 28:689–699

    Google Scholar 

  94. Green RE, Hanks RJ, Larson WE (1964) Estimates of field infiltration by numerical solution of the moisture flow equation. Soil Sci Soc Am J 28:15–19

    Google Scholar 

  95. Green TR (1994) The roles of moisture-dependent anisotropy and landscape topography in soil-water flow and groundwater recharge. Ph.D. dissertation, Stanford University, p 304

    Google Scholar 

  96. Pidwirny M (2006) Infiltration and soil water storage. In: Fundamentals of physical geography, 2nd edn. http://www.physicalgeography.net/fundamentals/8l.html. Accessed 3 Oct 2011

  97. Eltahir EAB (1989) A feedback mechanism in annual rainfall in Central Sudan. J Hydrol 110:323–334

    Google Scholar 

  98. Eltahir EAB, Bras RL (1994) Precipitation recycling in the Amazon basin. Q J Roy Meteorol Soc 120:861–880

    Google Scholar 

  99. Eltahir EAB, Bras RL (1996) Precipitation recycling. AGU Rev Geophys 34(3):367–378

    Google Scholar 

  100. Eltahir EAB (1993) Interactions of hydrology and climate in the Amazon basin. Doctorate thesis, Mass. Inst. of Technol., Cambridge, p 188

    Google Scholar 

  101. Koster RD et al (2006) GLACE: the global land–atmosphere coupling experiment. Part I: overview. J Hydrometeorol 7:590–610

    Google Scholar 

  102. Delworth TL, Manabe S (1988) The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J Climate 1:523–547

    Google Scholar 

  103. Green TR, Erskine RH (2011) Measurement and inference of profile soil-water dynamics at different hill-slope positions in a semi-arid agricultural watershed. Water Resour Res 47(12):W00H15. doi:10.1029/2010WR010074

  104. De Lannoy GJM, Verhoest NEC, Houser PR, Gish TJ, Van Meirvenne M (2006) Spatial and temporal characteristics of soil moisture in an intensively monitored agricultural field (OPE3). J Hydrol 331:719–730

    Google Scholar 

  105. Lin HS, Kogelmann W, Walker C, Bruns MA (2006) Soil moisture patterns in a forested catchment: a hydropedological perspective. Geoderma 131:345–368

    Google Scholar 

  106. Zaslavsky D, Sinai G (1981) Surface hydrology: I—explanation of phenomena. ASCE J Hydraul Div 107(HY1):1–16

    Google Scholar 

  107. McCord JT, Stephens DB (1987) Lateral moisture flow beneath a sandy hillslope without an apparent impeding layer. Hydrol Process 1:225–238

    Google Scholar 

  108. Green TR, Freyberg DL (1995) State-dependent anisotropy—comparisons of quasi-analytical solutions with stochastic results for steady gravity drainage. Water Resour Res 31:2201–2211

    Google Scholar 

  109. Sinai G, Dirksen C (2006) Experimental evidence of lateral flow in unsaturated homogeneous isotropic sloping soil due to rainfall. Water Resour Res 42(W12402):12

    Google Scholar 

  110. Western AW, Grayson RB, Blöschl G, Willgoose GR, McMahon TA (1999) Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour Res 35:797–810

    Google Scholar 

  111. Perry MA, Niemann JD (2007) Analysis and estimation of soil moisture at the catchment scale using EOFs. J Hydrol 334:388–404

    Google Scholar 

  112. Busch FA, Niemann JD, Coleman ML (2012) Evaluation of an EOF-based method to downscale soil moisture patterns based on topographical attributes. Hydrolog Process 26(18):2696–2709

    Google Scholar 

  113. Coleman ML, Niemann JD (2012) An evaluation of nonlinear methods for estimating catchment-scale soil moisture patterns based on topographic attributes. J Hydroinformat 14(3):800–814

    Google Scholar 

  114. Western AW, Grayson RB, Green TR (1999) The Tarrawarra project: high resolution spatial measurement, modelling and analysis of soil moisture and hydrological response. Hydrol Process 13:633–652

    Google Scholar 

  115. Famiglietti JS, Ryu D, Berg AA, Rodell M, Jackson TJ (2008) Field observations of soil moisture variability across scales. Water Resour Res 44(1), W01423. doi:10.1029/2006wr005804

    Google Scholar 

  116. Green TR, Erskine RH (2004) Measurement, scaling, and topographic analyses of spatial crop yield and soil water content. Hydrol Process 18(8):1447–1465

    Google Scholar 

  117. Green TR, Dunn GH, Erskine RH, Salas JD, Ahuja LR (2009) Fractal analyses of steady infiltration and terrain on an undulating agricultural field. Vadose Zone J 8(2):310–320

    Google Scholar 

  118. Salas JD, Boes DC, Yevjevich V, Pegram GGS (1979) Hurst phenomenon as a pre-asymptotic behavior. J Hydrol 44:1–15

    Google Scholar 

  119. Meng H, Salas JD, Green TR, Ahuja LR (2006) Scaling analysis of space-time infiltration based on the universal multifractal model. J Hydrol 322:220–235

    Google Scholar 

  120. Ohmura A (2001) Physical basis for the temperature-based melt index method. J Appl Meteorol 40:753–761

    Google Scholar 

  121. Vergara W, Deeb AM, Valencia AM, Bradley RS, Francou B, Zarzar A, Grunwaldt A, Haeussling SM (2007) Economic impacts of rapid glacier retreat in the Andes. EOS Trans Am Geophys Union 88(25):261–264

    Google Scholar 

  122. Singh VP, Singh P, Haritashya UK (2011) Encyclopedia of snow, ice, and glaciers. Springer, Dordrecht, p 1400

    Google Scholar 

  123. Hooke R (2005) Principles of glacier mechanics, 2nd edn. Cambridge University Press, UK

    Google Scholar 

  124. Clare GR, Fitzharris BB, Chin TSH, Salinger MJ (2002) Interannual variation in end-of-summer snowlines of the southern Alps of New Zealand, and relationships with southern hemisphere atmospheric circulation and sea surface temperature patterns. Int J Climatol 22:107–120

    Google Scholar 

  125. Martinec J, Rango A (1986) Parameter values for snowmelt runoff modeling. J Hydrol 84:197–219

    Google Scholar 

  126. Hock R (2003) Temperature index melt modeling in mountain areas. J Hydrol 282(1–4):104–115

    Google Scholar 

  127. Hock R (2005) Glacier melt: a review of processes and their modelling. Prog Phys Geograph 29:362–391

    Google Scholar 

  128. Braithwaitwe RJ, Olesen OB (1989) Calculation of glacier ablation from air temperature, West Greenland. In: Oerlemans J (ed) Glacier fluctuations and climate change. Glaciol Quatern Geol, Dordrecht, pp 219–233

    Google Scholar 

  129. Oerlemans J, Anderson B, Hubard A, Huybrechts P, Johannesson T, Knap WH, Schmeits M (1998) Modeling the response of glaciers to climate warming. Climate Dynam 14:267–274

    Google Scholar 

  130. Schaefli B, Hingray B, Niggl IM, Musy A (2005) A conceptual glacio-hydrological model for high mountainous catchments. Hydrol Earth Syst Sci 9:95–109

    Google Scholar 

  131. Kustas WP, Rango A (1994) A simple energy budget algorithm for the snowmelt runoff model. Water Resour Res 30:1515–1527

    Google Scholar 

  132. Braithwaitwe RJ, Konzelmann T, Marty C, Olesen OB (1998) Errors in daily ablation measurements in northern Greenland, 1993-94, and their implications for glacier climate studies. J Glaciol 44(148):583–588

    Google Scholar 

  133. Arendt A, Sharp M (1999) Energy balance measurements on a Canadian high arctic glacier and their implications for mass balance modeling. In: Tranter M et al (eds) Interactions between the cryosphere, climate, and greenhouse gases. Proceedings of the IUGG symp., Birmingham 1999, IAHS publ. no. 256, pp 165–172

    Google Scholar 

  134. Hay JE, Fitzharris BB (1988) A comparison of the energy-balance and bulk-aerodynamic approaches for estimating glacier melt. J Glaciol 4:145–153

    Google Scholar 

  135. WMO (World Meteorological Organization) (1986) Intercomparison of models for snowmelt runoff. Operational hydrology report 23, no 646

    Google Scholar 

  136. Braithwaitwe RJ, Zhang Y (1999) Modeling changes in glacier mass balance that may occur as a result of climate changes. Geogr Ann 81A:489–496

    Google Scholar 

  137. Martinec J (1989) Hour-to hour snowmelt rates and lysimeter outflow during an entire ablation period. In: Colbeck SC (ed) Glacier and snow cover variations. Proc. Baltimore Symp., Maryland, Wallingford: IAHS publication 183, pp 19–28

    Google Scholar 

  138. Pellicciotti F, Brock B, Strasser U, Burlando P, Funk M, Corripio J (2005) An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d’Arolla, Switzerland. J Glaciol 51(175):573–587

    Google Scholar 

  139. Willis IC, Sharp MJ, Richards KS (1993) Studies of the water balance of Midtdalsbreen, Hardangerjökulen, Norway. I. The calculation of surface water inputs from basic meteorological data. Zeitschrift für Gletscherkunde und Glazialgeologie 27/28:97–115

    Google Scholar 

  140. Anderson EA (1973) National weather service river forecast system/snow accumulation and ablation model, NOAA Tech, Memorandum NWS HYDRO-17. U.S. Department of Commerce, Silver Springs, MD, p 217

    Google Scholar 

  141. Martinec J, Rango A, Roberts R (2008) Snowmelt runoff model (SRM) user’s manual, agricultural experiment station special report 100. New Mexico State University, Las Cruces, New Mexico

    Google Scholar 

  142. Mark BG, Seltzer GO (2003) Tropical glacier meltwater contribution to stream discharge: a case study in the Cordillera Blanca, Peru. J Glaciol 49(165):271–281

    Google Scholar 

  143. Schaner N, Voisin N, Nijssen B, Lettenmaier DP (2012) The contribution of glacier melt to streamflow. Environ Res Lett 7, 034029 (8pp). doi:10.1088/1748-9326/7/3/034029

  144. Mulvaney TJ (1851) On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and flood discharges in a given catchment. Trans Inst Civ Eng Ireland 4(2):18–33

    Google Scholar 

  145. Singh VP (1995) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, CO, 1144 pp

    Google Scholar 

  146. Beven KJ (2000) Rainfall-runoff modelling. The primer. Wiley, New York

    Google Scholar 

  147. Bowles DS (2001) Recent advances in the modeling of hydrologic systems, NATO Advanced Study Institute. Kluwer Academic Publishers, Sintra, Portugal

    Google Scholar 

  148. Singh VP, Frevert DK (2002) Mathematical models of small watershed hydrology and applications. Water Resources Publications, Littleton, CO, p 950

    Google Scholar 

  149. Singh VP, Frevert DK (2002) Mathematical models of large watershed hydrology. Water Resources Publications, Littleton, CO, p 891

    Google Scholar 

  150. Todini E (1988) Rainfall-runoff modeling—past, present and future. J Hydrol 100(1):341–352

    Google Scholar 

  151. Beven KJ, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(3):279–298

    Google Scholar 

  152. Blöschl G, Sivapalan M (1995) Scale issues in hydrological modelling: a review. In: Kalma JD, Sivapalan M (eds) Scale issues in hydrological modelling. Wiley, Chichester, UK, pp 9–48

    Google Scholar 

  153. Todini E (2007) Hydrological catchment modelling: past, present and future. Hydrol Earth Syst Sci 11(1):468–482

    Google Scholar 

  154. Moradkhani H, Sorooshian S (2008) General review of rainfall-runoff modeling: model calibration, data assimilation and uncertainty analysis. In: Sorooshian S, Hsu K-L, Coppola E, Tomassetti B, Verdecchia M, Visconti G (eds) Hydrological modelling and the water cycle. Springer, Berlin Heidelberg

    Google Scholar 

  155. Todini E (2011) History and perspectives of hydrological catchment modeling. Hydrol Research 42:73–85. doi: 10.2166/nh.2011.096

  156. Clarke RT (1973) A review of some mathematical models used in hydrology, with observations on their calibration and use. J Hydrol 19(1):1–20

    Google Scholar 

  157. Wheater HS, Jakeman AJ, Beven KJ (1993) Progress and directions in rainfall-runoff modeling. In: Jakeman AJ, Beck MB, McAleer MJ (eds) Modelling change in environmental systems. Wiley, Chichester, pp 101–132

    Google Scholar 

  158. Wagener T, Wheater HS, Gupta HV (2004) Rainfall-runoff modelling in gauged and ungauged catchments. Imperial College Press, London, UK, p 306

    Google Scholar 

  159. Beck MB (1987) Water quality modeling: review of the analysis uncertainty. Water Resour Res 23:1393–1442

    CAS  Google Scholar 

  160. Liu Y, Gupta HV (2007) Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour Res 43 (W07401). doi:10.1029/2006WR005756

  161. Beven KJ (2001) Spatially distributed modelling: conceptual approach to runoff prediction. In: Bowles DS (ed) Recent advances in the modelling of hydrologic systems. Kluwer, Dordrecht, pp 191–219

    Google Scholar 

  162. Mertens J, Madsen H, Kristensen M, Jacques D, Feyen J (2005) Sensitivity of soil parameters in unsaturated zone modelling and the relation between effective, laboratory and in situ estimates. Hydrol Process 19:1611–1633

    Google Scholar 

  163. Francés F, Vélez JI, Vélez JJ (2007) Split-parameter structure for the automatic calibration of distributed hydrological models. J Hydrol 332(1):226–240

    Google Scholar 

  164. Freeze RA, Harlan RL (1969) Blueprint for a physically-based, digitally-simulated hydrologic response model. J Hydrol 9:237–258

    Google Scholar 

  165. Beven KJ (1989) Changing ideas in hydrology—the case of physically-based models. J Hydrol 105:157–172. doi:10.1016/0022-1694(89)90101-7

    Google Scholar 

  166. Beven K (2002) Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system. Hydrol Process 16:189–206

    Google Scholar 

  167. Blackmarr WA (1995) Documentation of hydrologic, geomorphic, and sediment transport measurements on the Goodwin creek experimental watershed, northern Mississippi, for the period 1982–1993. Preliminary release, U.S. Department of Agriculture, National Sedimentation Laboratory, Oxford, MS, p 41

    Google Scholar 

  168. Vélez JI, Francés F, Lavabre J, Puricelli M (1999) Adaptación del Modelo GR3 a un Modelo Distribuido por Isocronas para Simulación de Crecidas. Aplicación a la Cuenca del Réal Collobrier. Avances en Recursos Hidráulicos 6:23–36 (in Spanish)

    Google Scholar 

  169. Francés F, Vélez JJ, Vélez JI, Puricelli M (2002) Distributed modelling of large basins for a real time flood forecasting system in Spain. In: Proceedings second federal interagency hydrologic modelling conference, Las Vegas, USA, July, CD Format, pp 3513–3524

    Google Scholar 

  170. Morales-de la Cruz M, Francés F (2008) Hydrological modelling of the Sierra de las Minas in Guatemala, by using a conceptual distributed model and considering the lack of data. In: Mander U, Brebbia CA, Martín-Duque JF (eds) Environment and landscape evolution III. WIT Press, Southampton, UK, pp 97–108

    Google Scholar 

  171. Vélez JJ, Puricelli M, López Unzu F, Francés F (2009) Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrol Earth Syst Sci 13(2):229–246

    Google Scholar 

  172. Guichard Romero D, García Bartual R, Francés Garcia F, Domínguez Mora R (2009) Análisis de la densidad de estaciones en zonas de lluvias convectivas. Caso del Mediterráneo español. Ingeniería Hidráulica de México 24(3):35–49

    Google Scholar 

  173. Francés F, Benito G (1995) La modelación distribuida con pocos parámetros de las crecidas. Ingeniería del Agua 2(4):7–24 (in Spanish)

    Google Scholar 

  174. Molnár P, Ramírez JA (1998) An analysis of energy expenditure in Goodwin Creek. Water Resour Res 34(7):1819–1829

    Google Scholar 

  175. Rykiel EJ (1996) Testing ecological models: the meaning of validation. Ecol Model 90:229–244

    Google Scholar 

  176. Beck MB, Ravetz JR, Mulkey LA, Barnwell TO (1997) On the problem of model validation for predictive exposure assessments. Stoch Hydrol Hydraul 11(3):229–254

    Google Scholar 

  177. Konikow LF, Bredehoeft JD (1992) Ground-water models cannot be validated. Adv Water Resour 15:75–83

    Google Scholar 

  178. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641–646

    CAS  Google Scholar 

  179. Yapo PO, Gupta HV, Sorooshian S (1996) Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. J Hydrol 181:23–48

    CAS  Google Scholar 

  180. Gan TY, Dlamini EM, Biftu GF (1997) Effects of model complexity and structure, data quality, and objective functions on hydrologic modeling. J Hydrol 192:81–103

    Google Scholar 

  181. Gupta VH, Sorooshian S, Yapo PO (1998) Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information. Water Resour Res 34(4):751–763

    Google Scholar 

  182. Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37(5):1169–1188

    CAS  Google Scholar 

  183. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans Am Soc Agricult Biol Eng 50(3):885–900

    Google Scholar 

  184. Duan Q, Gupta VK, Sorooshian S (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031

    Google Scholar 

  185. Duan Q, Gupta VK, Sorooshian S (1993) A shuffled complex evolution approach for effective and efficient global minimization. J Optim Theor Appl 76(3):501–521

    Google Scholar 

  186. Mantovan P, Todini E (2006) Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology. J Hydrol 330:368–381. doi:10.1016/j.hydrol.2006.04.046

    Google Scholar 

  187. Stedinger JR, Vogel RM, Lee SU, Batchelder R (2008) Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resour Res 44(W00B06). doi:10.1029/2008WR006822

  188. Vrugt JA, ter Braak CJF, Gupta HV, Robinson BA (2009) Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stoch Environ Res Risk Assess 23(7):1011–1026

    Google Scholar 

  189. Klepper O, Scholten H, van de Kamer JPG (1991) Prediction uncertainty in an ecological model of the Oosterschelde estuary. Water Res 10:191–209

    Google Scholar 

  190. Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimization for hydrologic models. J Hydrol 204:83–97

    Google Scholar 

  191. Madsen H (2000) Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. J Hydrol 235:276–288

    Google Scholar 

  192. Madsen H (2003) Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Adv Water Resour 26:205–216

    Google Scholar 

  193. van Griensven A, Bauwens W (2003) Multiobjective autocalibration for semidistributed water quality models. Water Resour Res 39(12):1348. doi:10.1029/2003WR002284

    Google Scholar 

  194. Hornberger GM, Spear RC (1980) Eutrophication in Peel Inlet, I, The problem-defining behaviour and a mathematical model for the phosphorus scenario. Water Res 14(1):29–42

    CAS  Google Scholar 

  195. Beven KJ, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249(1–4):11–29

    Google Scholar 

  196. Beven KJ (2009) Environmental modelling: an uncertain future? Routledge, London

    Google Scholar 

  197. Muttiah RS, Wurbs RA (2002) Scale-dependent soil and climate variability effects on watershed water balance of the SWAT model. J Hydrol 256:264–285

    Google Scholar 

  198. Spruill CA, Workman SR, Taraba JL (2000) Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Trans Am Soc Agric Eng 43(6):1431–1439

    Google Scholar 

  199. NRC (National Research Council) (2001) Assessing the TMDL approach to water quality management. National Academy Press, Washington, DC

    Google Scholar 

  200. Kavetski D, Kuczera G, Franks SW (2006) Bayesian analysis of input uncertainty in hydrological modeling: theory. Water Resour Res 42(W03407). doi:10.1029/2005WR004368

  201. Morgan MG, Keith D (1995) Subjective judgments by climate experts. Environ Sci Tech 29(10):468–476

    Google Scholar 

  202. Morgan MG, Henrion M (1990) Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  203. Saltelli A, Chan K, Scott EM (2000) Sensitivity analysis. Wiley, New York

    Google Scholar 

  204. Benjamin JR, Cornell CA (1970) Probability, statistics, and decision for civil engineers. McGraw-Hill, New York

    Google Scholar 

  205. Marshall L, Nott D, Sharma A (2004) A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resour Res 40(W02501). doi:10.1029/2003WR002378

  206. Ajami NK, Duan Q, Sorooshian S (2007) An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour Res 43(W01403). doi:10.1029/2005WR004745

  207. Krzysztofowicz R (1999) Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resour Res 35:2739–2750

    Google Scholar 

  208. Raftery AE (1993) Bayesian model selection in structural equation models. In: Bollen KA, Long JS (eds) Testing structural equation models. Newbury Park, CA, pp 163–180

    Google Scholar 

  209. Vrugt JA, Robinson BA (2007) Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging. Water Resour Res 43(W01411). doi:10.1029/2005WR004838

  210. Todini E (2008) A model conditional processor to assess predictive uncertainty in flood forecasting. Int J River Basin Manag 6(2):123–137

    Google Scholar 

  211. Weerts AH, Winsemius HC, Verkade JS (2010) Estimation of predictive hydrological uncertainty using quantile regression: examples from the national flood forecasting system (England and Wales). Hydrol Earth Syst Sci 7:5547–5575. doi:10.5194/hessd-7-5547-2010

    Google Scholar 

  212. Todini E (2011) History and perspectives of hydrological catchment modeling. Hydrol Res 42:73–85. doi:10.2166/nh.2011.096

    Google Scholar 

  213. Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency analysis of extreme events. In: Maidment DR (ed) The handbook of hydrology. McGraw Hill Book, New York

    Google Scholar 

  214. Yevjevich V (1972) Probability and statistics in hydrology. Water Resources Publications, Littleton, CO

    Google Scholar 

  215. Haan CT (2002) Statistical methods in hydrology. Blackwell Publisher, Ames, Iowa, p 496

    Google Scholar 

  216. Salas JD, Heo JH, Smith RA (2013) Probability and statistics for water resources and environmental systems. Colorado State University, Fort Collins (forthcoming book)

    Google Scholar 

  217. Rajagopalan B, Salas JD, Lall U (2010) Stochastic methods for modeling precipitation and streamflows. In: Berndtsson R, Sivakumar B (eds) Advances in data-based approaches for hydrologic modeling and forecasting. World Scientific, London, UK

    Google Scholar 

  218. IACWD (Interagency Committee on Water Data) (1982) Guidelines for determining flood flow frequency, bulletin 17B. Office of Water Data Coordination, U.S. Geological Survey, Reston, VA

    Google Scholar 

  219. Cunnane C (1989) Statistical distributions for flood frequency analysis, WMO Operational Hydrology report no. 33, Geneva, Switzerland

    Google Scholar 

  220. Mood AM, Graybill FA, Boes DC (1974) Introduction to the theory of statistics, 3rd edn. McGraw Hill Book, New York, p 564

    Google Scholar 

  221. Bobee B (1975) The log-Pearson type 3 distribution and its applications in hydrology. Water Resour Res 11(5):681–689

    Google Scholar 

  222. USACE (U.S. Army Corps of Engineers) (1996) Risk based analysis of flood damage reduction studies, manual, EM 1110-2-1619. USACE (US Army Corps of Engineers), Washington, DC

    Google Scholar 

  223. Platte EJ (2001) Risk management for hydraulic systems under hydrologic loads. In: Bogardi JJ, Kundzewicz ZW (eds) Risk, reliability, uncertainty, and robustness of water resources systems. Cambridge University Press, New York

    Google Scholar 

  224. Benson MA (1962) Evolution of methods for evaluating the occurrence of floods, water supply paper 1580-A. U.S. Geological Survey, Washington DC

    Google Scholar 

  225. Thomas DM, Benson MA (1970) Generalization of streamflow characteristics from drainage-basin characteristics, water supply paper 1975. US Geological Survey, Washington, DC

    Google Scholar 

  226. Mc Cain JF, Jarrett RD (1976) Manual for estimating flood characteristics on natural-flow streams in Colorado, technical manual no. 1, Colorado Water Conservation Board in Cooperation with the U.S. Geological Survey

    Google Scholar 

  227. Salas JD (1980) Use of multiple regression analysis to determine flood characteristics of small catchments. In: Sanders TG (ed) Hydrology for transportation engineers. U.S. Dept. of Transportation, Washington DC, HDV-21

    Google Scholar 

  228. Latraverse M, Rasmussen PF, Bobee B (2002) Regional estimation of flood quantiles: parametric versus nonparametric regression models. Water Resour Res 38(6):11

    Google Scholar 

  229. Saah AD (1975) Basic hydrology methodology, summary and exhibit B, revision and updating of regional flood frequency analysis and computations, Santa Clara Valley Water District

    Google Scholar 

  230. Dalrymple T (1960) Flood frequency analysis, water supply paper 1543-A. US Geological Survey, Washington, DC

    Google Scholar 

  231. Sveinsson OGB, Salas JD, Boes DC (2002) Regional frequency analysis of extreme precipitation in Northeastern Colorado and Fort Collins Flood of 1997. ASCE J Hydrolog Eng 7(1):49–63

    Google Scholar 

  232. Fill HD, Stedinger JR (1995) Homogeneity tests based upon Gumbel distribution and a critical appraisal of Dalrymple’s test. J Hydrol 166(1–2):81–105

    Google Scholar 

  233. Lu LH, Stedinger JR (1992) Sampling variance of normalized GEV/PWM quantile estimators and a regional homogeneity test. J Hydrol 138(1–2):223–245

    Google Scholar 

  234. Naghavi B, Yu FX (1995) Regional frequency analysis of extreme precipitation in Louisiana. J Hydraul Eng 121(11):819–827

    Google Scholar 

  235. Rao AR, Hamed KH (1997) Regional frequency analysis of Wabash River flood data by L-moments. J Hydrolog Eng 2(4):169–179

    Google Scholar 

  236. Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments, 1st edn. Cambridge University Press, New York

    Google Scholar 

  237. Stedinger JR (1983) Estimating a regional flood frequency distribution. Water Resour Res 19(2):503–510

    Google Scholar 

  238. Sveinsson OGB, Boes DC, Salas JD (2003) Population index flood method for regional frequency analysis. Water Resour Res 37(11):2733–2748

    Google Scholar 

  239. Burn DH, Zrinji Z, Kowalchuk M (1997) Regionalization of catchments for regional flood frequency analysis. ASCE J Hydrolog Eng 2(2):76–82

    Google Scholar 

  240. Cunnane C (1988) Methods and merits of regional flood frequency analysis. J Hydrol 100(1–3):269–290

    Google Scholar 

  241. Meigh JR, Farquharson FAK, Sutcliffe JV (1997) A worldwide comparison of regional flood estimation methods and climate. Hydrolog Sci J 42(2):225–244

    Google Scholar 

  242. Gustard A, Roald LA, Demuth S, Lumadjeng HS, Gross R (1989) Flow regimes from experimental and network data (FREND), 2 volumes, vol I. Hydrological studies. UNESCO, IHP III, project 6.1. Institute of Hydrology, Wallingford, UK

    Google Scholar 

  243. Vogel RM, Kroll CN (1992) Regional geo-hydrologic-geomorphic relationships for the estimation of low-flow statistics. Water Resour Res 28(9):2451–2458

    Google Scholar 

  244. Nathan RJ, McMahon TA (1992) Estimating low flow characteristics at ungagged catchments. Water Resour Manag 6:85–100

    Google Scholar 

  245. Kroll CN, Luz JG, Allen TB, Vogel RM (2004) Developing a watershed characteristics database to improve low streamflow prediction. ASCE J Hydrolog Eng 9(2):116–125

    Google Scholar 

  246. Laaha G, Bloschl G (2007) A national low flow estimation procedure for Austria. Hydrolog Sci J 52(4):625–644

    Google Scholar 

  247. Zhang Z, Kroll CN (2007) The base flow correlation method with multiple gaged sites. J Hydrol 347(3–4):371–380

    Google Scholar 

  248. Tase N (1976) Area-deficit-intensity characteristics of droughts. Ph.D. dissertation, Colorado State University, Fort Collins, CO

    Google Scholar 

  249. Santos M (1983) Regional drought: a stochastic characterization. J Hydrol 66(1–4):183–211

    Google Scholar 

  250. Rossi G, Cancelliere A (2003) At site and regional identification by REDIM model. In: Rossi G, Cancelliere A, Pereira LS, Oweis T, Shatanawi M, Zairi A (eds) Tools for drought mitigation in Mediterranean regions. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 37–54

    Google Scholar 

  251. De Michele C, Rosso R (2001) Uncertainty assessment of regionalized flood frequency estimates. ASCE J Hydrolog Eng 6(6):453–459

    Google Scholar 

  252. Salas JD, Heo JH (1997) On the uncertainty of risk of failure of hydraulic structures, managing water: coping with scarcity and abundance. IAHR Congress, San Francisco, pp 506–511

    Google Scholar 

  253. Salas JD, Burlando P, Heo JH, Lee DJ (2003) The axis of risk and uncertainty in hydrologic design, hydrology days 2003. Colorado State University, Fort Collins, CO

    Google Scholar 

  254. Salas JD, Heo JH, Lee DJ, Burlando P (2013) Quantifying the uncertainty of return period and risk in hydrologic design. ASCE J Hydrolog Eng 18(5):518–526

    Google Scholar 

  255. Loucks DP, Stedinger JR, Haith DA (1981) Water resources planning and analysis. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  256. Salas JD (1993) Analysis and modeling of hydrologic time series. In: Maidment DR (ed) The handbook of hydrology. McGraw Hill Book, New York

    Google Scholar 

  257. Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civ Eng 116:770–799

    Google Scholar 

  258. Thomas HA, Fiering MB (1962) Mathematical synthesis of streamflow sequences for analysis of river basins by simulation. In: Maas A et al (eds) The design of water resources systems. Harvard University Press, Cambridge, MA, pp 459–493

    Google Scholar 

  259. Yevjevich V (1963) Fluctuations of wet and dry years—part I, research data assembly and mathematical models. Hydrology papers 1. Colorado State University, Fort Collins, CO

    Google Scholar 

  260. Matalas NC (1967) Mathematical assessment of synthetic hydrology. Water Resour Res 3(4):937–945

    Google Scholar 

  261. Mandelbrot BB, Wallis JR (1969) Computer experiments with fractional Gaussian noises: part 1, averages and variances. Water Resour Res 5(1):228–241

    Google Scholar 

  262. Salas JD, Delleur JW, Yevjevich V, Lane WL (1980) Applied modeling of hydrologic time series. Water Resources Publications, Littleton, CO, p 484 (2nd Printing 1985, 3rd Printing, 1988)

    Google Scholar 

  263. Bras R, Rodriguez-Iturbe I (1985) Random functions and hydrology. Addison-Wesley, Reading, MA, USA

    Google Scholar 

  264. Hipel K, Mc Leod AI (1994) Time series modeling of water resources and environmental systems. Elsevier, Amsterdam, p 1013

    Google Scholar 

  265. Lall U, Sharma A (1996) A nearest neighbor bootstrap for resampling hydrologic time series. Water Resour Res 32(3):679–693

    Google Scholar 

  266. Vogel RM, Shallcross AL (1996) The moving blocks bootstrap versus parametric time series models. Water Resour Res 32(6):1875–1882

    Google Scholar 

  267. Sharma A, O’Neill R (2002) A nonparametric approach for representing interannual dependence in monthly streamflow sequences. Water Resour Res 38(7):1100, 5-1/5-10

    Google Scholar 

  268. Srinivas VV, Srinivasan K (2005) Hybrid matched-block bootstrap for stochastic simulation of multiseason streamflows. J Hydrol 329(1–2):1–15

    Google Scholar 

  269. Salas JD, Lee TS (2009) Nonparametric simulation of single site seasonal streamflows. ASCE J Hydrolog Eng 15(4) April

    Google Scholar 

  270. Valencia D, Schaake JC (1973) Disaggregation processes in stochastic hydrology. Water Resour Res 9(3):580–585

    Google Scholar 

  271. Lane W (1979) Applied stochastic techniques (last computer package) user manual. Div. Planning Tech. Services, U.S. Bureau of Reclamation, Denver, CO

    Google Scholar 

  272. Stedinger JR, Vogel RM (1984) Disaggregation procedures for generating serially correlated flow vectors. Water Resour Res 20(1):47–56

    Google Scholar 

  273. Stedinger JR, Pei D, Cohn TA (1985) A condensed disaggregation model for incorporating parameter uncertainty into monthly reservoir simulations. Water Resour Res 21(5):665–675

    Google Scholar 

  274. Santos E, Salas JD (1992) Stepwise disaggregation scheme for synthetic hydrology. ASCE J Hydraul Eng 118(5):765–784

    Google Scholar 

  275. Tarboton DG, Sharma A, Lall U (1998) Disaggregation procedures for stochastic hydrology based on nonparametric density estimation. Water Resour Res 34(1):107–119

    CAS  Google Scholar 

  276. Lee TS, Salas JD, Prairie J (2010) Nonparametric streamflow disaggregation modeling. Water Resour Res 46(W08545):1–14

    Google Scholar 

  277. Salas JD, Boes DC (1980) Shifting level modeling of hydrologic series. Adv Water Resour 3:59–63

    Google Scholar 

  278. Eltahir EAB (1996) El Niño and the natural variability in the flow of the Nile River. Water Resour Res 32(1):131–137

    Google Scholar 

  279. Salas JD, Pielke RA (2003) Stochastic characteristics and modeling of hydroclimatic processes. In: Potter TD, Colman BR (eds) Handbook of weather, climate and water: atmospheric chemistry, hydrology, and societal impacts. Wiley, New York

    Google Scholar 

  280. Obeysekera JTB, Tabios G, Salas JD (1987) On parameter estimation of temporal rainfall models. Water Resour Res 23(10):1837–1850

    Google Scholar 

  281. Katz R, Parlange M (1995) Generalizations of chain-dependent processes: applications to hourly precipitation. Water Resour Res 31(5):1331–1341

    Google Scholar 

  282. Kerr RA (1992) Unmasking a shifty climate system. Res News 255:1508–1510

    CAS  Google Scholar 

  283. Bobbee B, Robitaille R (1975) Correction of bias in the estimation of the coefficient of skewness. Water Resour Res 11(6):851–854

    Google Scholar 

  284. Wallis JR, O’Connell PE (1972) Small sample estimation of ρ 1. Water Resour Res 8(3):707–712

    Google Scholar 

  285. Fernandez B, Salas JD (1990) Gamma-autoregressive models for streamflow simulation. ASCE J Hydraul Eng 116(11):1403–1414

    Google Scholar 

  286. Roesner LA, Yevjevich V (1966) Mathematical models for time series of monthly precipitation and monthly runoff, hydrology papers 15. Colorado State University, Fort Collins, CO

    Google Scholar 

  287. Press WH, Flannery BP, Teukolsky SA, Vetterling WV (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, New York, NY

    Google Scholar 

  288. Fiering MB, Jackson BB (1971) Synthetic streamflows. Water resources monograph 1, American Geophysical Union, Washington DC, p 98

    Google Scholar 

  289. Grygier JC, Stedinger JR (1990) SPIGOT, a synthetic streamflow generation software package, technical description, version 2.5. School of Civil and Environmental Engineering, Cornell University, Ithaca, NY

    Google Scholar 

  290. Sveinsson OGB, Lee TS, Salas JD, Lane WL, Frevert DK (2010) Stochastic analysis, modeling, and simulation (SAMS) version 2010. Colorado State University, Fort Collins, CO

    Google Scholar 

  291. Wood EF, O’Connell PE (1985) Real-time forecasting. In: Anderson MG, Burt TP (eds) Hydrological forecasting. Wiley, New York, pp 505–558

    Google Scholar 

  292. Haltiner JP, Salas JD (1988) Short-term forecasting of snowmelt runoff using ARMAX models. Water Resour Bull 24(5):1083–1089

    Google Scholar 

  293. Burlando P, Rosso R, Cadavid L, Salas JD (1993) Forecasting of short-term rainfall using ARMA models. J Hydrol 144:193–211

    Google Scholar 

  294. Lettenmaier DP, Wood EF (1993) Hydrologic forecasting. In: Maidment DR (ed) Handbook of hydrology. McGraw Hill Book, New York

    Google Scholar 

  295. Ribeiro J, Lauzon N, Rousselle J, Trung HT, Salas JD (1998) Comparaison de deux modeles pour la prevision journaliere en temps reel des apports naturels. Can J Civ Eng 25:291–304

    Google Scholar 

  296. Ramirez JA, Bras RL (1985) Conditional distributions of Neyman-Scott models for storm arrivals and their use in irrigation control. Water Resour Res 21:317–330

    Google Scholar 

  297. Bertoni JC, Tucci CE, Clarke RT (1992) Rainfall-based real-time flood forecasting. J Hydrol 131:313–339

    Google Scholar 

  298. French MN, Bras RL, Krajewski WF (1992) A Monte-Carlo study of rainfall forecasting with a stochastic model. Stoch Hydrol Hydraul 6(1):27–45

    Google Scholar 

  299. Govindaraju RS, Rao AR (2000) Artificial neural networks in hydrology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  300. Gupta HV, Hsu K, Sorooshian S (2000) Effective and efficient modeling for streamflow forecasting. In: Govindaraju RS, Rao AR (eds) Artificial neural networks in hydrology. Kluwer Academic Publishers, Dordrecht, pp 7–22

    Google Scholar 

  301. Salas JD, Markus M, Tokar AS (2000) Streamflow forecasting based on artificial neural networks. In: Rao AR, Rao G (eds) Artificial neural networks in hydrology. Kluwer Academic Publishers, London, pp 23–51

    Google Scholar 

  302. French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137:1–31

    Google Scholar 

  303. Kuligowski RJ, Barros AP (1998) Experiments in short-term precipitation forecasting using artificial neural networks. Mon Weather Rev 126:470–482

    Google Scholar 

  304. Luk KC, Ball JE, Sharma A (2000) A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J Hydrol 227(1–4):56–65

    Google Scholar 

  305. Toth E, Brath A, Montanari A (2000) Comparison of short-term rainfall prediction models for real-time flood forecasting. J Hydrol 239(1–4):132–147

    Google Scholar 

  306. Cayan DR, Webb RH (1992) El Niño/southern oscillation and streamflow in the western United States. In: Diaz HF, Markgraf V (eds) Historical and paleoclimate aspects of the southern oscillation. Cambridge University Press, UK, pp 29–68

    Google Scholar 

  307. Clark MP, Serreze MC, McCabe GJ (2001) Historical effects of El Niño and La Niña events on seasonal evolution of the montane snowpack in the Columbia and Colorado river basins. Water Resour Res 37(3):741–757

    Google Scholar 

  308. Hidalgo HG, Dracup JA (2003) ENSO and PDO effects on hydroclimate variations of the Upper Colorado River basin. J Hydrometeorol 4:5–23

    Google Scholar 

  309. Tootle GA, Piechota TC (2006) Relationships between Pacific and Atlantic ocean sea surface temperatures and U.S. streamflow variability. Water Resour Res 42(W07411):14

    Google Scholar 

  310. Sveinsson OGB, Lall U, Gaudel J, Kushnir Y, Zebiak S, Fortin V (2008) Analysis of climatic states and atmospheric circulation patterns that influence Quebec spring streamflows. ASCE J Hydrolog Eng 13(6):411–424

    Google Scholar 

  311. Hamlet AF, Lettenmaier DP (1999) Columbia river streamflow forecasting based on ENSO and PDO climate signals. ASCE J Water Resour Plann Manag 125(6):333–341

    Google Scholar 

  312. Eldaw AK, Salas JD, Garcia LA (2003) Long range forecasting of the Nile River flow using large scale oceanic atmospheric forcing. J Appl Meteorol 42:890–904

    Google Scholar 

  313. Grantz K, Rajagopalan B, Clark M, Zagona E (2005) A technique for incorporating large-scale climate information in basin-scale ensemble streamflow forecasts. Water Resour Res 41. doi:10.1029/2004WR003467

  314. Tootle GA, Singh AK, Piechota TC, Farnham I (2007) Long-lead time forecasting of U.S. streamflows using partial least squares regression. ASCE J Hydrolog Eng 12(5):442–451

    Google Scholar 

  315. Salas JD, Fu CJ, Rajagopalan B (2011) Long range forecasting of Colorado streamflows based on hydrologic, atmospheric, and oceanic data. ASCE J Hydrolog Eng 16(6):508–520

    Google Scholar 

  316. Stone RC, Hammer GL, Marcussen T (1996) Prediction of global rainfall using phases of the Southern Oscillation Index. Nature 384:252–255

    CAS  Google Scholar 

  317. Sharma A (2000) Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 3—a non parametric probabilistic forecast model. J Hydrol 239(1–4):249–258

    Google Scholar 

  318. Regonda SK, Rajagopalan B, Clark M, Zagona E (2006) A multimodel ensemble forecast framework: application to spring seasonal flows in the Gunnison River basin. Water Resour Res 42(W09404):14

    Google Scholar 

  319. Box GEP, Jenkins GW (1976) Time series analysis forecasting and control, revised edition. Holden-Day, San Francisco

    Google Scholar 

  320. Camacho F, McLeod AI, Hipel KW (1987) Multivariate contemporaneous ARMA model with hydrological applications. Stoch Hydrol Hydraul 1:141–154

    Google Scholar 

  321. Vicens GJ, Rodriguez-Iturbe I, Schaake JC (1975) Bayesian generation of synthetic streamflows. Water Resour Res 11(6):827–838

    Google Scholar 

  322. Valdes JB, Rodriguez-Iturbe I, Vicens GJ (1977) Bayesian generation of synthetic streamflows; 2. The multivariate case. Water Resour Res 13(2):291–295

    Google Scholar 

  323. McLeod AI, Hipel KW (1978) Simulation procedures for Box-Jenkins models. Water Resour Res 14(5):969–975

    Google Scholar 

  324. Stedinger JR, Taylor MR (1982) Synthetic streamflow generation, Part 2. Parameter uncertainty. Water Resour Res 18(4):919–924

    Google Scholar 

  325. Wood EF (1978) Analyzing hydrologic uncertainty and its impact upon decision making in water resources. Adv Water Resour 1(5):299–305

    Google Scholar 

  326. Klemes VR, Srikanthan R, McMahon TA (1981) Long-memory flow models in reservoir analysis: what is their practical value. Water Resour Res 17(3):737–751

    Google Scholar 

  327. Cover KA, Unny TE (1986) Application of computer intensive statistics to parameter uncertainty in streamflow synthesis. Water Resour Bull 22(3):495–507

    Google Scholar 

  328. Tasker GD, Dunne P (1997) Bootstrap position analysis for forecasting low flow frequency. ASCE J Water Resour Plann Manag 123(6):359–367

    Google Scholar 

  329. Lee DJ, Salas JD, Boes DC (2007) Uncertainty analysis for synthetic streamflow generation. In: Proceedings of the ASCE/EWRI World Congress, Tampa, Florida. May

    Google Scholar 

  330. Draper N, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York, USA

    Google Scholar 

  331. Olsen JR, Stedinger JR, Matalas NC, Stakhiv EZ (1999) Climate variability and flood frequency estimation for the Upper Mississippi and Lower Missouri rivers. J Am Water Resour Assoc 35(6):1509–1523

    Google Scholar 

  332. Lins HF, Slack JR (1999) Streamflow trends in the United States. Geophys Res Lett 26(2):227–230

    Google Scholar 

  333. Strupczewski WG, Singh VP, Mitosek HT (2001) Non-stationary approach to at-site flood frequency modeling. III. Flood frequency analysis of Polish rivers. J Hydrol 248:152–167

    Google Scholar 

  334. Douglas EM, Vogel RM, Kroll CN (2000) Trends in floods in the United States: impact of spatial correlation. J Hydrol 240:90–105

    Google Scholar 

  335. Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nat Lett 438:347–350

    CAS  Google Scholar 

  336. Potter KW (1976) Evidence for nonstationarity as a physical explanation of the Hurst phenomenon. Water Resour Res 12(5):1047–1052

    Google Scholar 

  337. McCabe GJ, Wolock DM (2002) A step increase in streamflow in the conterminous United States. Geophys Res Lett 29(24):2185, 38(1–4)

    Google Scholar 

  338. Franks SW, Kuczera G (2002) Flood frequency analysis: evidence and implications of secular climate variability, New South Wales. Water Resour Res 38(5):20 (1–7)

    Google Scholar 

  339. Sveinsson OGB, Salas JD, Boes DC, Pielke RA (2003) Modeling the dynamics of long term variability of hydroclimatic processes. J Hydrometeorol 4:489–505

    Google Scholar 

  340. Hejazi MI, Markus M (2009) Impacts of urbanization and climate variability on floods in Northeastern Illinois. ASCE J Hydrolog Eng 14(6):606–616

    Google Scholar 

  341. Jain S, Lall U (2000) Magnitude and timing of annual maximum floods: trends and large-scale climatic associations for the Blacksmith Fork River, Utah. Water Resour Res 36(12):3641–3651

    Google Scholar 

  342. Jain S, Lall U (2001) Floods in a changing climate: does the past represent the future? Water Resour Res 37(12):3193–3205

    Google Scholar 

  343. Fortin V, Perreault L, Salas JD (2004) Retrospective analysis and forecasting of streamflows using a shifting level model. J Hydrol 296:135–163

    Google Scholar 

  344. Waylen PR, Woo MK (1982) Prediction of annual floods generated by mixed processes. Water Resour Res 18(4):1283–1286

    Google Scholar 

  345. Rossi F, Fiorentino M, Versace P (1984) Two-component extreme value distribution for flood frequency analysis. Water Resour Res 20(7):847–856

    Google Scholar 

  346. Jarrett RD (1987) Flood hydrology of foothill and mountain streams in Colorado. Ph.D. dissertation, Department of Civil Engineering, Colorado State University, Fort Collins, CO

    Google Scholar 

  347. Salas JD, Boes DC, Cunnane C, Guo X, Cadavid LG (1990) Improved methods for regional flood frequency analysis, final report submitted to the U.S. Geological Survey, Washington, DC, March, p 113

    Google Scholar 

  348. Clarke RT (2002) Estimating trends in data from the Weibull and a generalized extreme value distribution. Water Resour Res 38(6):25 (1–10)

    Google Scholar 

  349. Clarke RT (2002) Estimating time trends in Gumbel-distributed data by means of generalized linear models. Water Resour Res 38(7):16 (1–11)

    Google Scholar 

  350. El Adlouni A, Ouarda TBM, Zhang X, Roy R, Bobee B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43(W03410):1–13

    Google Scholar 

  351. Kiem AS, Franks SW, Kuczera G (2003) Multi-decadal variability of flood risk. Geophys Res Lett 30(2):1035, 7(1–4)

    Google Scholar 

  352. Sveinsson OGB, Salas JD, Boes DC (2005) Prediction of extreme events in hydrologic processes that exhibit abrupt shifting patterns. ASCE J Hydrolog Eng 10(4):315–326

    Google Scholar 

  353. Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25:1287–1304

    Google Scholar 

  354. Griffis V, Stedinger JR (2007) Incorporating climate change and variability into Bulletin 17B LP3 model. ASCE World Environmental and Water Resources Congress 2007

    Google Scholar 

  355. Boes DC, Salas JD (1978) Nonstationarity in the mean and the Hurst phenomenon. Water Resour Res 14(1):135–143

    Google Scholar 

  356. Thyer M, Kuczera G (2000) Modeling long-term persistence in hydroclimatic time series using a hidden state Markov model. Water Resour Res 36(11):3301–3310

    Google Scholar 

  357. Akintug B, Rasmussen PF (2005) A Markov switching model for annual hydrologic time series. Water Resour Res 41, W09424 (1-10)

    Google Scholar 

  358. Hosking JRM (1984) Modeling persistence in hydrological time series using fractional differencing. Water Resour Res 20(12):1898–1908

    Google Scholar 

  359. Beran J (1994) Statistics for long-memory processes, monographs on statistics and applied probability, vol 61. Chapman & Hall, New York, USA

    Google Scholar 

  360. Montanari A, Rosso R, Taqqu MS (1997) Fractionally differenced ARIMA models applied to hydrologic time series. Water Resour Res 33(5):1035–1044

    Google Scholar 

  361. Mandelbrot BB (1971) A fast fractional Gaussian noise generator. Water Resour Res 7(3):543–553

    Google Scholar 

  362. Koutsoyiannis D (2002) The Hurst phenomenon and fractional Gaussian noise made easy. Hydrolog Sci J 47(4):573–595

    Google Scholar 

  363. Kidd CK (2001) Satellite rainfall climatology: a review. Int J Climatol 21:1041–1066

    Google Scholar 

  364. Huffman GF (2005) Satellite-based estimation of precipitation using microwave sensors. In: Anderson MG (ed) Encyclopedia of hydrologic sciences, chapter 64

    Google Scholar 

  365. Su FG, Hong Y, Lettenmaier DP (2008) Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J Hydrometeorol 9(4):622–640

    Google Scholar 

  366. Vorosmarty C et al (2001) Global water data: a newly endangered species. EOS Trans Am Geopysic Union 82(5):56–58

    Google Scholar 

  367. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55

    Google Scholar 

  368. Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503

    Google Scholar 

  369. Hsu KL, Gao X, Sorooshian S, Gupta HV (1997) Precipitation estimation from remotely sensed information using artificial neural networks. J Appl Meteorol 36:1176–1190

    Google Scholar 

  370. Dinku T, Ruiz F, Connor SJ, Ceccato P (2010) Validation and intercomparison of satellite rainfall estimates over Colombia. J Appl Meteorol Climatol 49(5):1004–1014

    Google Scholar 

  371. Krajewski WF, Ciach GJ, McCollum JR, Bacotiu C (2000) Initial validation of the Global Precipitation Climatology Project monthly rainfall over the United States. J Appl Meteorol 39:1071–1086

    Google Scholar 

  372. Nicholson SE, Some B, McCollum J, Nelkin E, Klotter D, Berte Y, Diallo BM, Gaye I, Kpabeba G, Ndiaye O (2003) Validation of TRMM and other rainfall estimates with a high-density gauge data set for West Africa. Part I: validation of GPCC rainfall product and pre-TRMM satellite and blended products. J Appl Meteorol 42:1337–1354

    Google Scholar 

  373. Nicholson SE, Some B, McCollum J, Nelkin E, Klotter D, Berte Y, Diallo BM, Gaye I, Kpabeba G, Ndiaye O (2003) Validation of TRMM and other rainfall estimates with a high-density gauge data set for West Africa. Part II: validation of TRMM rainfall products. J Appl Meteorol 42:1355–1368

    Google Scholar 

  374. Dinku T, Ceccato P, Kopec EG, Lemma M, Connor SJ, Ropelewski CF (2007) Validation of satellite rainfall products over East Africa’s complex topography. Int J Remote Sens 28(7):1503–1526

    Google Scholar 

  375. Dinku T, Chidzambwa S, Ceccato P, Connor SJ, Ropelewski CF (2008) Validation of high resolution satellite rainfall products over complex terrain. Int J Remote Sens 29(14):4097–4110

    Google Scholar 

  376. Goncalves de Goncalves GL, Shuttleworth WJ, Nijssen B, Burke EJ, Marengo JA, Chou SC, Houser P, Toll DL (2006) Evaluation of model-derived and remotely sensed precipitation products for continental South America. J Geophys Res 111(D16113):13

    Google Scholar 

  377. Huffman GF, Adler RF, Morrisey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2:36–50

    Google Scholar 

  378. Hossain F, Anagnostou EN (2004) Assessment of current passive microwave and infra-red based satellite rainfall remote sensing for flood prediction. J Geophys Res 109(D07102):14

    Google Scholar 

  379. Grebremichael M, Krajewski WF, Morrisey M, Langerud D, Huffman GF, Adler R (2003) Error uncertainty analysis of GPCP monthly rainfall products: a data-based simulation study. J Appl Meteorol 42:1837–1848

    Google Scholar 

  380. Steiner M, Bell TL, Zhang Y, Wood EF (2003) Comparison of two methods for estimating the sampling-related uncertainty of satellite rainfall averages based on a large radar dataset. J Climate 16:3759–3778

    Google Scholar 

  381. Tian YD, Peters-Lidard CD (2010) A global map of uncertainties in satellite-based precipitation measurements. Geophys Res Lett 37(L24407):6p

    Google Scholar 

  382. Alsdorf DE, Rodriguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys AGU, 2006RG000197: 24

    Google Scholar 

  383. Cudlip W, Ridley JK, Rapley CG (1990) The use of satellite radar altimetry for monitoring wetlands. In: Remote sensing and global change. Proceedings of the 16th annual conference of the remote sensing society, Swansea, Dep. of Geogr., Univ. of Nottingham, UK, pp 207–216

    Google Scholar 

  384. Guzkowska MAJ, Rapley CG, Ridley JK, Cudlip W, Birkett CM, Scott RF (1990) Developments in inland water and land altimetry, ESA Contract, CR-7839/88/F/FL

    Google Scholar 

  385. Koblisnky CJ, Clarke RT, Brenner AC, Frey H (1993) Measurement of river level variations with satellite altimetry. Water Resour Res 29(6):1839–1848

    Google Scholar 

  386. Birkett CM (1998) Contribution of the Topex NASA radar altimeter to the global monitoring of large rivers and wetlands. Water Resour Res 34(5):1223–1239

    CAS  Google Scholar 

  387. Birkett CM Mertes LAK, Dunne T, Costa M, Jasinski J (2002) Surface water dynamics in the Amazon basin: application of satellite radar altimetry. J Geophys Res 107, No. D20-8059. doi:10.1029/2001JD000609

  388. Coe MT, Birkett CM (2004) Calculation of river discharge and prediction of lake height from satellite radar altimetry: example for the Lake Chad basin. Water Resour Res 40, No. W10205. doi:10.1029/2003WR002543

  389. Zakharova E, Kouraev A, Cazenave A, Seyler F (2006) Amazon river discharge estimated from the TOPEX/Poseidon altimetry. Comput Geosci 338:188–196

    Google Scholar 

  390. Leon JG, Calmant S, Seyler F, Bonnet MP, Cauhopé M, Frappart F, Filizola N, Fraizy P (2006) Rating curves and estimation of average depth at the Upper Negro River based on satellite altimeter data and modeled discharges. J Hydrol 328(3–4):481–496

    Google Scholar 

  391. Getirana ACV, Bonnet M-P, Rotunno OC, Collischonn W, Guyot J-L, Seyler F, Mansur WJ (2010) Hydrological modelling and water balance of the Negro River basin: evaluation based on in situ and spatial altimetry data. Hydrol Process 24:3219–3236

    Google Scholar 

  392. Kääb A, Prowse T (2011) Cold-regions river flow observed from space. Geophys Res Lett 38(L08403):5

    Google Scholar 

  393. Biancamaria S, Hossain F, Lettenmaier DP (2011) Forecasting transboundary river water elevations from space. Geophys Res Lett 38(L11401):5

    Google Scholar 

  394. Owe M, Van de Griend AA, Chang ATC (1992) Surface moisture and satellite microwave observations in semiarid southern Africa. Water Resour Res 28:829–839

    Google Scholar 

  395. Njoku EG, Entekhabi D (1996) Passive microwave remote sensing of soil moisture. J Hydrol 184:101–129

    CAS  Google Scholar 

  396. Owe M, de Jeu R, Walker J (2001) A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans Geosci Rem Sens 39(8):1643–1654

    Google Scholar 

  397. Jackson TJ (2001) Multiple resolution analysis of L-band brightness temperature for soil moisture. IEEE Trans Geosci Rem Sens 39(1):151–164

    Google Scholar 

  398. Wigneron J-P, Calvet J-C, Pellarin T, Van de Griend AA, Berger M, Ferrazzoli P (2003) Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans. Remote Sens Environ 85:489–506

    Google Scholar 

  399. Wagner W, Verhoest NEC, Ludwig R, Tedesco M (2007) Remote sensing in hydrological sciences. Hydrol Earth Syst Sci 13:813–881, http://www.hydrol-earth-syst-sci.net/13/813/

    Google Scholar 

  400. Crow WT, Ryu D (2009) A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals. Hydrol Earth Syst Sci 13:1–16

    Google Scholar 

  401. Albergel C, Rüdiger C, Carrer D, Calvet J-C, Fritz N, Naeimi V, Bartalis Z, Hasenauer S (2009) An evaluation of ASCAT surface soil moisture products with in-situ observations in Southern France. Hydrol Earth Syst Sci 13:115–124

    CAS  Google Scholar 

  402. Mattia F, Satalino G, Pauwels VRN, Loew A (2009) Soil moisture retrieval through a merging of multi-temporal L-band SAR data and hydrologic modeling. Hydrol Earth Syst Sci 13:343–356

    Google Scholar 

  403. Courault D, Seguin B, Olioso A (2005) Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. J Irrigat Drain Syst 19(3):223–249

    Google Scholar 

  404. Moran MS, Jackson RD (1991) Assessing the spatial distribution of evapotranspiration using remotely sensed inputs. J Environ Qual 20(4):725–737

    Google Scholar 

  405. Kustas WP, Norman JM (1996) Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrolog Sci J 41(4):495–516

    Google Scholar 

  406. Quatrochi DA, Luval FJC (1999) Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications. Landsc Ecol 14:577–598. doi:10.1023/A:1008168910634

    Google Scholar 

  407. Overgaard J, Rosbjerg D, Butts MB (2006) Land-surface modeling in hydrologic perspective—a review. Biogeosciences 3:229–241

    Google Scholar 

  408. Gowda PH, Chavez JL, Colaizzi PD, Evett SR, Howell TA, Tolk JA (2007) Remote sensing based energy balance algorithms for mapping ET: current status and future challenges. Trans Am Soc Agricult Biol Eng 50(5):1639–1644

    Google Scholar 

  409. Glenn EP, Huete AR, Nagler PL, Hirschboeck KK, Brown P (2007) Integrating remote sensing and ground methods to estimate evapotranspiration. Crit Rev Plant Sci 26:139–168. doi:10.1080/07352680701402503

    Google Scholar 

  410. Verstraeten WW, Veroustraete F, Feyen J (2008) Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 8:70–117

    Google Scholar 

  411. Kalma JD, McVicar TR, McCabe MF (2008) Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surv Geophys 29:421–469

    Google Scholar 

  412. Ma W, Ma Y, Li M, Hu Z, Zhong L, Su Z, Ishikawa H, Wang J (2009) Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery. Hydrol Earth Syst Sci 13:57–67, http://www.hydrol-earth-syst-sci.net/13/57/2009/

    Google Scholar 

  413. Matsushita B, Xu M, Onda Y, Otsuki Y, Toyota M (2010) Detecting forest degradation in Kochi, Japan: ground-based measurements versus satellite (Terra/ASTER) remote sensing. Hydrol Process 24:588–595

    Google Scholar 

  414. Rouse J, Haas R, Schell J, Deering D (1974) Monitoring vegetation systems in the great plains with ERTS. In: Proceedings of third earth resources technology satellite-1 symposium, Greenbelt, NASA SP-351, pp 3010–3017

    Google Scholar 

  415. Gamon J, Penuelas J, Field CV (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 41(1):35–44

    Google Scholar 

  416. Gao BC (1996) NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266

    Google Scholar 

  417. Peñuelas J, Pinol J, Ogaya R, Filella I (1997) Estimation of plant water concentration by the reflectance water index WI (R900/R970). Int J Remote Sens 18:2869–2875

    Google Scholar 

  418. Xiao X, Hollinger D, Aber J, Goltz M, Davidson E, Zhang Q, Moore BIII (2004) Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens Environ 89:519–534

    Google Scholar 

  419. Nemani R, Running S (1997) Land cover characterization using multitemporal red, near-IR, and thermal-IR data from NOAA/AVHRR. Ecol Appl 7(1):79–90

    Google Scholar 

  420. Nemani R, Pierce LL, Runing SW, Goward SN (1993) Developing satellite derived estimates of surface moisture status. J Appl Meteorol 32:548–557

    Google Scholar 

  421. Anderson MC, Norman JM, Mecikalski JR, Otkin JA, Kustas WP (2007) A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J Geophys Res 112(D10117):17

    Google Scholar 

  422. Anderson MC, Norman JM, Mecikalski JR, Otkin JA, Kustas WP (2007) A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Soil moisture climatology. J Geophys Res 112(D11112):13

    Google Scholar 

  423. Anderson MC, Norman JM, Disk GR, Kustas WP, Mecikalski JR (1997) A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens Environ 60:195–216

    Google Scholar 

  424. Anderson MC, Kustas WP, Norman JM, Hain CR, Mecikalski JR, Schultz L, Gonzales-Dugo MP, Cammalleri C, d’Urso G, Pimstein A, Gao F (2011) Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol Earth Syst Sci 15:223–239

    Google Scholar 

  425. Anderson MC, Allen RG, Morse A, Kustas WP (2012) Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens Environ. doi:10.1016/j.rse.2011.08.025

    Google Scholar 

  426. Dozier J, Painter TH, Rittger K, Frew JE (2008) Time-space continuity of daily maps of fractional snow cover and albedo from MODIS. Adv Water Resour 31:1515–1526

    Google Scholar 

  427. Parajka J, Blosch G (2006) Validation of MODIS snow cover images over Austria. Hydrol Earth Syst Sci 10:679–689

    Google Scholar 

  428. Gafurov A, Bardossy A (2009) Snow cover data derived from MODIS for water balance applications. Hydrol Earth Syst Sci 6:791–841

    Google Scholar 

  429. Gao J, Liu Y (2011) Applications of remote sensing, GIS and GPS in glaciology: a review. Prog Phys Geograph 25(4):520–540

    Google Scholar 

  430. Kääb A (2005) Combination of SRTM3 and repeat ASTER data for deriving alpine glacier velocities in the Bhutan Himalaya. Remote Sens Environ 94(4):463–474

    Google Scholar 

  431. Berthier E, Arnaud Y, Kumar R, Ahmad S, Wagnon P, Chevallier P (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens Environ 108(3):327–338

    Google Scholar 

  432. Ulaby FT, Stiles WH (1980) The active and passive microwave response to snow parameters 2. Water equivalent of dry snow. J Geophys Res 85(C2):1045–1049

    Google Scholar 

  433. Dong J, Walker JP, Houser PR (2005) Factors affecting remotely sensed snow water equivalent uncertainty. Remote Sens Environ 97:68–82

    Google Scholar 

  434. Hall DK, Kelly RE, Foster JL, Chang AT (2005) Estimation of snow extent and snow properties. In: Anderson MG (ed) Encyclopedia of hydrologic sciences. Wiley, New York

    Google Scholar 

  435. Yueh S (2009) Remote sensing applications for snow cover and snow water equivalent. In: Water information management symposium, Western States Water Council, San Diego, CA

    Google Scholar 

  436. Durand M, Margulis SA (2006) Feasibility test of multifrequency radiometric data assimilation to estimate snow water equivalent. J Hydrometeorol 7:443–457

    Google Scholar 

  437. Jacobson MD (2010) Inferring snow water equivalent for a snow-covered ground reflector using GPS multipath signals. Remote Sens 2:2426–2441

    Google Scholar 

  438. Wahr J, Molenaar M, Bryan F (1998) Time-variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(30):205–230

    Google Scholar 

  439. Rodell M, Famiglietti JS (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour Res 35(9):2705–2723

    Google Scholar 

  440. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505

    CAS  Google Scholar 

  441. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(20):999–1003

    CAS  Google Scholar 

  442. Scanlon BR, Longuevergne L, Wilson C, Favreau G (2011) Use of GRACE satellite to assess groundwater resources in semiarid regions. http://www.un-igrac.org/dynamics/modules/SFIL0100/view.php?fil_Id=145

  443. Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405(3–4):532–560

    Google Scholar 

  444. Dingman SL (2002) Physical hydrology, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  445. Oltman RE, Stenberg HOR, Ames FC, Davis LC Jr (1964) Amazon river investigations reconnaissance measurements of July 1963, U.S.G.S. circular 486, Washington USA

    Google Scholar 

  446. Oltman RE (1968) Reconnaissance investigations of the discharge and water quality of the Amazon. U.S.G.S. circular 552, Washington USA

    Google Scholar 

  447. Meade RH, Nordin CF, Curtis WF (1979) Sediment in Rio Amazonas and some of its principal tributaries during the high water seasons of 1976 and 1977. In: Proceedings of III simposio Brasileiro de Hidrologia (Brasilia, Brasil), 2, pp 472–485, April

    Google Scholar 

  448. Meade RH (1985) Suspended sediment in the Amazon river and its tributaries in Brazil during 1982–1984, USGS open file report 85-492, Denver, CO, USA

    Google Scholar 

  449. Richey JE, Meade RH, Salati E, Devol AH, Nordin CF, dos Santos U (1986) Water discharge and suspended sediment concentrations in the Amazon River. Water Resour Res 22(5):756–764

    CAS  Google Scholar 

  450. Guyot JL, Filizola N, Guimaräes V (1998) Amazon suspended sediment yield measurements using an Acoustic Doppler Current Profiler (ADCP): first results. In: Johnson AI, Fernandez-Jauregui CA (eds) Hydrology in the humid tropic environment. Proc. Symp. Kingston, Jamaica, Nov., IAHS Publ. No. 253, pp 109–115

    Google Scholar 

  451. Callède J, Kosuth P, Guyot JL, Guimaräes V (2000) Discharge determination by Acoustic Doppler Current Profilers (ADCP): a moving bottom error correction method and its application on the River Amazon at ODIBOS. Hydrolog Sci J 45(6):911–924

    Google Scholar 

  452. Filizola N, Guyot JL (2004) The use of Doppler technology for suspended sediment discharge determination in the River Amazon. Hydrolog Sci J 49(1):143–153

    Google Scholar 

  453. Laraque A, Guyot JL, Filizola N (2009) Mixing processes in the Amazon River at the confluences of the Negro and Solimoes Rivers. Encontro das Aguas, Manaus, Brazil. Hydrol Process 23:3131–3140

    CAS  Google Scholar 

  454. Biondi F, Strachan S (2011) Dendrohydrology in 2050: challenges and opportunities. In: Grayman WM, Loucks DP, Saito L (eds) Toward a sustainable water future, visions for 2050. American Society of Civil Engineers, New York

    Google Scholar 

  455. Meko D, Stockton CW, Boggess WR (1995) The tree-ring record of severe sustained drought. Water Resour Bull 31(5):789–801

    Google Scholar 

  456. Shulman E (1946) Tree-ring hydrology of the Colorado river basin. University of Arizona Bulletin. vol 16, no 4

    Google Scholar 

  457. Meko D, Therrell M, Baisan C, Hughes M (2001) Sacramento river flow reconstructed to AD 869 from tree rings. J Am Water Resour Assoc 37(4):1029–1039

    Google Scholar 

  458. Gray ST, Fastie CL, Jackson ST, Betancourt JL (2004) Tree ring-based reconstruction of precipitation in the Bighorn basin, Wyoming since 1260 A.D. J Climate 17(19):3855–3865

    Google Scholar 

  459. Yin ZY, Shao X, Qin N, Laing E (2008) Reconstruction of a 1436-year soil moisture and vegetation water use history based on tree-ring widths from Qilian junipers in northeastern Qaidam basin, northwestern China. Int J Climatol 28:37–53

    Google Scholar 

  460. Woodhouse CA (2003) A 431-yr reconstruction of western Colorado snowpack from tree rings. J Climate 16:1551–1561

    Google Scholar 

  461. Loaiciga HA, Haston L, Michaelsen J (1993) Dendrohydrology and long-term hydrological phenomena. Rev Geophys 31(2):151–171

    Google Scholar 

  462. Woodhouse CA (2001) A tree-ring reconstruction of streamflow for the Colorado front range. J Am Water Resour Assoc 37(3):561–569

    Google Scholar 

  463. Gedalof Z, Peterson DL, Mantua NJ (2004) Columbia river flow and drought since 1750. J Am Water Resour Assoc 40(6):1579–1592

    Google Scholar 

  464. Tarawneh ZS, Salas JD (2008) Extending the streamflows of the Colorado river using tree ring indices and drought analysis. Project report submitted to the U.S. Bureau of Reclamation, Colorado State University, August, p 83

    Google Scholar 

  465. Biondi F, Kozubouwski TJ, Panorska AK, Saito L (2008) A new stochastic model of episode peak and duration for eco-hydro-climatic applications. Ecolog Model 211:383–395

    Google Scholar 

  466. Cleveland MK (2000) A 963-year reconstruction of Summer (JJA) streamflows in the White River, Arkansas, USA, from tree-rings. The Holocene 10(1):33–41

    Google Scholar 

  467. Hidalgo HG, Piechota TC, Dracup JA (2000) Alternative principal components regression procedures for dendrohydrologic reconstructions. Water Resour Res 36(11):3241–3249

    Google Scholar 

  468. Gonzalez J, Valdes JB (2003) Bivariate drought analysis using tree ring reconstruction. ASCE J Hydrolog Eng 8(4):247–257

    Google Scholar 

  469. Maidment DR (2011) The CUAHSI hydrologic information system. CUAHSI conference on hydrologic data and information systems, Abstracts, Utah State University, Logan, June 22–24

    Google Scholar 

  470. Zaslavsky I, Maidment DR, Tarboton DG, Piasecki M, Goodall J, Valentine D, Whitenack T, Horsburgh JS, Whiteaker T (2011) CUAHSI HIS service oriented architecture. CUAHSI conference on hydrologic data and information systems, Abstracts, Utah State University, Logan, June 22–24

    Google Scholar 

  471. Tarboton DG, Horsburgh JS, Schreuders KAT, Maidment DR, Zaslavsky I, Valentine D (2011) The HydroServer platform for sharing hydrologic data, CUAHSI conference on hydrologic data and information systems, Abstracts, Utah State University, Logan, June 22–24

    Google Scholar 

  472. Salas FR, Boldrini E, Maidment DR, Nativi S, Domenico B (2011) A federated approach to crossing the digital divide, CUAHSI conference on hydrologic data and information systems, Abstracts, Utah State University, Logan, June 22–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this chapter

Cite this chapter

Salas, J.D. et al. (2014). Introduction to Hydrology. In: Wang, L., Yang, C. (eds) Modern Water Resources Engineering. Handbook of Environmental Engineering, vol 15. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-595-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-595-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-594-1

  • Online ISBN: 978-1-62703-595-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics