Skip to main content

Endocrine Hypertension

  • Chapter
  • First Online:
Pediatric Hypertension

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

Abstract

Hypertension may be caused by abnormal synthesis of, or response to, various hormones. The proportion of pediatric hypertension cases resulting from such problems probably represents at most a few percent of cases overall but a higher fraction of cases of severe hypertension, those occurring in the very young, or cases clustering in families. Most endocrine hypertension involves the adrenal gland and its hormones. The adrenal gland is composed of two endocrine tissues: the medulla (secreting catecholamines) and the cortex (synthesizing cortisol and aldosterone). Pheochromocytoma is mainly a disease of the adrenal medulla, although extramedullary sites may be involved. Many different diseases affecting the adrenal cortex can cause hypertension. These include hypertensive forms of congenital adrenal hyperplasia, primary aldosteronism due to hyperplasia of the zona glomerulosa or to adenomas, and Cushing syndrome (excessive glucocorticoid exposure) due to iatrogenic etiologies, to pituitary or adrenal adenomas, or other tumors secreting excessive ACTH. Hypertension can also be caused by thyrotoxicosis due to Graves disease or to the thyrotoxic phase of Hashimoto’s thyroiditis. It is important to accurately diagnose these disorders because the associated hypertension requires, and usually responds well to, specific treatment of the underlying condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santos IN, Spadari-Bratfisch RC. Stress and cardiac beta adrenoceptors. Stress. 2006;9(2):69–84.

    Article  PubMed  CAS  Google Scholar 

  2. Reddy VS, O’Neill Jr JA, Holcomb III GW, Neblett III WW, Pietsch JB, Morgan III WM, et al. Twenty-five-year surgical experience with pheochromocytoma in children. Am Surg. 2000;66(12):1085–91.

    PubMed  CAS  Google Scholar 

  3. Eisenhofer G, Lenders JW, Linehan WM, Walther MM, Goldstein DS, Keiser HR. Plasma normetanephrine and metanephrine for detecting pheochromocytoma in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. N Engl J Med. 1999; 340(24):1872–9.

    Article  PubMed  CAS  Google Scholar 

  4. Dannenberg H, van Nederveen FH, Abbou M, Verhofstad AA, Komminoth P, de Krijger RR, et al. Clinical characteristics of pheochromocytoma patients with germline mutations in SDHD. J Clin Oncol. 2005;23(9):1894–901.

    Article  PubMed  CAS  Google Scholar 

  5. Fishbein L, Nathanson KL. Pheochromocytoma and paraganglioma: understanding the complexities of the genetic background. Cancer Genet. 2012;205(1–2): 1–11.

    Article  PubMed  CAS  Google Scholar 

  6. Weingarten TN, Cata JP, O’Hara JF, Prybilla DJ, Pike TL, Thompson GB, et al. Comparison of two preoperative medical management strategies for laparoscopic resection of pheochromocytoma. Urology. 2010;76(2):508–11.

    Article  PubMed  Google Scholar 

  7. Eisenhofer G, Timmers HJ, Lenders JW, Bornstein SR, Tiebel O, Mannelli M, et al. Age at diagnosis of pheochromocytoma differs according to catecholamine phenotype and tumor location. J Clin Endocrinol Metab. 2011;96(2):375–84.

    Article  PubMed  CAS  Google Scholar 

  8. Eisenhofer G, Lattke P, Herberg M, Siegert G, Qin N, Darr R, et al. Reference intervals for plasma free metanephrines with an age adjustment for normetanephrine for optimized laboratory testing of phaeochromocytoma. Ann Clin Biochem. 2013;50:62–9.

    Google Scholar 

  9. Weise M, Merke DP, Pacak K, Walther MM, Eisenhofer G. Utility of plasma free metanephrines for detecting childhood pheochromocytoma. J Clin Endocrinol Metab. 2002;87(5):1955–60.

    Article  PubMed  CAS  Google Scholar 

  10. Chen H, Sippel RS, O’Dorisio MS, Vinik AI, Lloyd RV, Pacak K. The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas. 2010;39(6):775–83.

    Article  PubMed  Google Scholar 

  11. Pacak K, Eisenhofer G, Ahlman H, Bornstein SR, Gimenez-Roqueplo AP, Grossman AB, et al. Pheochromocytoma: recommendations for clinical practice from the First International Symposium. October 2005. Nat Clin Pract Endocrinol Metab. 2007;3(2):92–102.

    Google Scholar 

  12. Derlin T, Busch JD, Wisotzki C, Schoennagel BP, Bannas P, Papp L, et al. Intraindividual comparison of 123I-mIBG SPECT/MRI, 123I-mIBG SPECT/CT, and MRI for the detection of adrenal pheochromocytoma in patients with elevated urine or plasma catecholamines. Clin Nucl Med. 2013;38:e1–6.

    Google Scholar 

  13. Ilias I, Divgi C, Pacak K. Current role of metaiodobenzylguanidine in the diagnosis of pheochromocytoma and medullary thyroid cancer. Semin Nucl Med. 2011;41(5):364–8.

    Article  PubMed  Google Scholar 

  14. Zinnamosca L, Petramala L, Cotesta D, Marinelli C, Schina M, Cianci R, et al. Neurofibromatosis type 1 (NF1) and pheochromocytoma: prevalence, clinical and cardiovascular aspects. Arch Dermatol Res. 2011;303(5):317–25.

    Article  PubMed  Google Scholar 

  15. Donckier JE, Michel L. Phaeochromocytoma: state-of-the-art. Acta Chir Belg. 2010;110(2):140–8.

    PubMed  CAS  Google Scholar 

  16. Ayala-Ramirez M, Feng L, Johnson MM, Ejaz S, Habra MA, Rich T, et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J Clin Endocrinol Metab. 2011;96(3):717–25.

    Article  PubMed  CAS  Google Scholar 

  17. Erlic Z, Rybicki L, Peczkowska M, Golcher H, Kann PH, Brauckhoff M, et al. Clinical predictors and algorithm for the genetic diagnosis of pheochromocytoma patients. Clin Cancer Res. 2009;15(20):6378–85.

    Article  PubMed  CAS  Google Scholar 

  18. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151.

    Article  PubMed  CAS  Google Scholar 

  19. Curnow KM, Tusie-Luna MT, Pascoe L, Natarajan R, Gu JL, Nadler JL, et al. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol Endocrinol. 1991;5: 1513–22.

    Article  PubMed  CAS  Google Scholar 

  20. Clark AJ, Metherell LA. Mechanisms of disease: the adrenocorticotropin receptor and disease. Nat Clin Pract Endocrinol Metab. 2006;2(5):282–90.

    Article  PubMed  CAS  Google Scholar 

  21. Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol. 2001;63:193–213 [Review] [162 refs].

    Article  PubMed  CAS  Google Scholar 

  22. Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond). 2007;112(8): 417–28.

    Article  CAS  Google Scholar 

  23. Condon JC, Pezzi V, Drummond BM, Yin S, Rainey WE. Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase. Endocrinology. 2002;143(9):3651–7.

    Article  PubMed  CAS  Google Scholar 

  24. Bassett MH, Suzuki T, Sasano H, White PC, Rainey WE. The orphan nuclear receptors NURR1 and NGFIB regulate adrenal aldosterone production. Mol Endocrinol. 2004;18(2):279–90.

    Article  PubMed  CAS  Google Scholar 

  25. Nogueira EF, Rainey WE. Regulation of aldosterone synthase by activator transcription factor/cAMP response element-binding protein family members. Endocrinology. 2010;151(3):1060–70.

    Article  PubMed  CAS  Google Scholar 

  26. Tomlinson JW, Stewart PM. Mechanisms of disease: selective inhibition of 11beta-hydroxysteroid dehydrogenase type 1 as a novel treatment for the metabolic syndrome. Nat Clin Pract Endocrinol Metab. 2005;1(2):92–9.

    Article  PubMed  CAS  Google Scholar 

  27. Mune T, Rogerson FM, Nikkila H, Agarwal AK, White PC. Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet. 1995;10:394–9.

    Article  PubMed  CAS  Google Scholar 

  28. White PC, Mune T, Agarwal AK. 11β-hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocr Rev. 1997;18:135–56.

    Article  PubMed  CAS  Google Scholar 

  29. Yang S, Zhang L. Glucocorticoids and vascular reactivity. Curr Vasc Pharmacol. 2004;2(1):1–12.

    Article  PubMed  Google Scholar 

  30. Tomaschitz A, Pilz S, Ritz E, Obermayer-Pietsch B, Pieber TR. Aldosterone and arterial hypertension. Nat Rev Endocrinol. 2010;6(2):83–93.

    Article  PubMed  CAS  Google Scholar 

  31. Funder J. Mineralocorticoids and cardiac fibrosis: the decade in review. Clin Exp Pharmacol Physiol. 2001;28(12):1002–6.

    Article  PubMed  CAS  Google Scholar 

  32. Soundararajan R, Pearce D, Hughey RP, Kleyman TR. Role of epithelial sodium channels and their regulators in hypertension. J Biol Chem. 2010;285(40): 30363–9.

    Article  PubMed  CAS  Google Scholar 

  33. Curnow KM, Slutsker L, Vitek J, Cole T, Speiser PW, New MI, et al. Mutations in the CYP11B1 gene causing congenital adrenal hyperplasia and hypertension cluster in exons 6, 7, and 8. Proc Natl Acad Sci USA. 1993;90:4552–6.

    Article  PubMed  CAS  Google Scholar 

  34. White PC. Steroid 11 beta-hydroxylase deficiency and related disorders. Endocrinol Metab Clin North Am. 2001;30(1):61–79 [Review] [60 refs].

    Article  PubMed  CAS  Google Scholar 

  35. Auchus RJ. The genetics, pathophysiology, and management of human deficiencies of P450c17. Endocrinol Metab Clin North Am. 2001;30(1):101–19 [Review] [77 refs].

    Article  PubMed  CAS  Google Scholar 

  36. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355:262–5.

    Article  PubMed  CAS  Google Scholar 

  37. Pascoe L, Curnow KM, Slutsker L, Connell JM, Speiser PW, New MI, et al. Glucocorticoid-suppressible hyperaldosteronism results from hybrid genes created by unequal crossovers between CYP11B1 and CYP11B2. Proc Natl Acad Sci USA. 1992;89:8327–31.

    Article  PubMed  CAS  Google Scholar 

  38. Scholl UI, Nelson-Williams C, Yue P, Grekin R, Wyatt RJ, Dillon MJ, et al. Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc Natl Acad Sci USA. 2012;109(7):2533–8.

    Article  PubMed  CAS  Google Scholar 

  39. Choi M, Scholl UI, Yue P, Bjorklund P, Zhao B, Nelson-Williams C, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331(6018):768–72.

    Article  PubMed  CAS  Google Scholar 

  40. Stowasser M, Ahmed AH, Pimenta E, Taylor PJ, Gordon RD. Factors affecting the aldosterone/renin ratio. Horm Metab Res. 2012;44(3):170–6.

    Article  PubMed  CAS  Google Scholar 

  41. Nishikawa T, Omura M, Satoh F, Shibata H, Takahashi K, Tamura N, et al. Guidelines for the diagnosis and treatment of primary aldosteronism–the Japan Endocrine Society 2009. Endocr J. 2011;58(9):711–21.

    Article  PubMed  CAS  Google Scholar 

  42. Funder JW, Carey RM, Fardella C, Gomez-Sanchez CE, Mantero F, Stowasser M, et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008;93(9): 3266–81.

    Article  PubMed  CAS  Google Scholar 

  43. Li JS, Flynn JT, Portman R, Davis I, Ogawa M, Shi H, et al. The efficacy and safety of the novel aldosterone antagonist eplerenone in children with hypertension: a randomized, double-blind, dose–response study. J Pediatr. 2010;157(2):282–7.

    Article  PubMed  CAS  Google Scholar 

  44. Steichen O, Zinzindohoue F, Plouin PF, Amar L. Outcomes of adrenalectomy in patients with unilateral primary aldosteronism: a review. Horm Metab Res. 2012;44(3):221–7.

    Article  PubMed  CAS  Google Scholar 

  45. Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS, et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet. 2000;26(1):89–92.

    Article  PubMed  CAS  Google Scholar 

  46. Horvath A, Giatzakis C, Tsang K, Greene E, Osorio P, Boikos S, et al. A cAMP-specific phosphodiesterase (PDE8B) that is mutated in adrenal hyperplasia is expressed widely in human and mouse tissues: a novel PDE8B isoform in human adrenal cortex. Eur J Hum Genet. 2008;16(10):1245–53.

    Article  PubMed  CAS  Google Scholar 

  47. Horvath A, Boikos S, Giatzakis C, Robinson-White A, Groussin L, Griffin KJ, et al. A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet. 2006;38(7): 794–800.

    Article  PubMed  CAS  Google Scholar 

  48. Cicala MV, Mantero F. Hypertension in Cushing’s syndrome: from pathogenesis to treatment. Neuroendocrinology. 2010;92 Suppl 1:44–9.

    Article  PubMed  CAS  Google Scholar 

  49. Batista DL, Riar J, Keil M, Stratakis CA. Diagnostic tests for children who are referred for the investigation of Cushing syndrome. Pediatrics. 2007;120(3): e575–86.

    Article  PubMed  Google Scholar 

  50. Arnaldi G, Angeli A, Atkinson AB, Bertagna X, Cavagnini F, Chrousos GP, et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab. 2003;88(12): 5593–602.

    Article  PubMed  CAS  Google Scholar 

  51. Charmandari E, Kino T, Ichijo T, Chrousos GP. Generalized glucocorticoid resistance: clinical aspects, molecular mechanisms, and implications of a rare genetic disorder. J Clin Endocrinol Metab. 2008;93(5):1563–72.

    Article  PubMed  CAS  Google Scholar 

  52. Wilson C. Pituitary function: Cushing disease–long-term outcome after transsphenoidal surgery. Nat Rev Endocrinol. 2012;8(4):194.

    Article  PubMed  Google Scholar 

  53. Barker FG, Klibanski A, Swearingen B. Transsphenoidal surgery for pituitary tumors in the United States, 1996–2000: mortality, morbidity, and the effects of hospital and surgeon volume. J Clin Endocrinol Metab. 2003;88(10):4709–19.

    Article  PubMed  CAS  Google Scholar 

  54. Couch RM, Smail PJ, Dean HJ, Winter JS. Prolonged remission of Cushing disease after treatment with cyproheptadine. J Pediatr. 1984;104(6):906–8.

    Article  PubMed  CAS  Google Scholar 

  55. Dumitrescu AM, Refetoff S. Novel biological and clinical aspects of thyroid hormone metabolism. Endocrine. 2007;10:127–39.

    Article  CAS  Google Scholar 

  56. Gershengorn MC, Neumann S. Update in TSH receptor agonists and antagonists. J Clin Endocrinol Metab. 2012;97:4287–92.

    Google Scholar 

  57. Kleinau G, Krause G. Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr Rev. 2009;30(2):133–51.

    Article  PubMed  CAS  Google Scholar 

  58. Brenta G, Danzi S, Klein I. Potential therapeutic applications of thyroid hormone analogs. Nat Clin Pract Endocrinol Metab. 2007;3(9):632–40.

    Article  PubMed  CAS  Google Scholar 

  59. Silva JE, Bianco SD. Thyroid-adrenergic interactions: physiological and clinical implications. Thyroid. 2008;18(2):157–65.

    Article  PubMed  CAS  Google Scholar 

  60. Bahn RS, Burch HB, Cooper DS, Garber JR, Greenlee MC, Klein I, et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid. 2011;21(6):593–646.

    Article  Google Scholar 

  61. Rivkees SA, Mattison DR. Ending propylthiouracil-induced liver failure in children. N Engl J Med. 2009;360(15):1574–5.

    Article  PubMed  CAS  Google Scholar 

  62. Rivkees SA, Dinauer C. An optimal treatment for pediatric Graves’ disease is radioiodine. J Clin Endocrinol Metab. 2007;92(3):797–800.

    Article  PubMed  CAS  Google Scholar 

  63. Lee JA, Grumbach MM, Clark OH. The optimal treatment for pediatric Graves’ disease is surgery. J Clin Endocrinol Metab. 2007;92(3):801–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perrin C. White M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

White, P.C. (2013). Endocrine Hypertension. In: Flynn, J., Ingelfinger, J., Portman, R. (eds) Pediatric Hypertension. Clinical Hypertension and Vascular Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-490-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-490-6_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-489-0

  • Online ISBN: 978-1-62703-490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics