Skip to main content

The Role of Dietary Electrolytes and Childhood Blood Pressure Regulation

  • Chapter
  • First Online:
Pediatric Hypertension

Abstract

The prevalence rates of high blood pressure and cardiovascular risk have increased in youth, given the increasing rates of overweight and obesity. Dietary electrolytes play an important role on influencing blood pressure (BP) mechanisms in youth, and previous research indicates that dietary sodium, potassium, and calcium significantly affect BP regulation. Electrolyte balance is essential for health, and the beneficial effects of decreasing sodium intake on BP in youth have been strongly supported. Though intervention studies demonstrate that reduced intake of sodium is beneficial for BP, it is not clear whether children and adolescents can comply with long-term efforts to reduce sodium intake. There is a growing body of evidence that increased potassium and calcium intake also reduces risk of high BP in youth, and studies suggest that some youth may be more likely to comply with these diets, which emphasize adding foods (e.g., foods containing potassium and calcium), rather than eliminating foods as in a reduced sodium diet. The purpose of this chapter is to summarize the nutritional electrolyte-related determinants of blood pressure in children and adolescents, specifically the roles of dietary sodium and potassium in regulating casual BP, BP reactivity, and circadian BP patterns in youth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinaiko AR, Gomez-Marin O, Prineas RJ. Prevalence of “significant” hypertension in junior high school-aged children: the children and adolescent blood pressure program. J Pediatr. 1989;114:664–9.

    Article  PubMed  CAS  Google Scholar 

  2. Muntner P, He J, Cutler JA, Wildman RP, Whelton PK. Trends in blood pressure among children and adolescents. JAMA. 2004;291:2107–13.

    Article  PubMed  CAS  Google Scholar 

  3. Ostchega Y, Carroll M, Prineas RJ, McDowell MA, Louis T, Tilert T. Trends of elevated blood pressure among children and adolescents: data from the national health and nutrition examination survey1988–2006. Am J Hypertens. 2009;22:59–67.

    Article  PubMed  Google Scholar 

  4. Lauer RM, Clarke WR. Childhood risk factors for high adult blood pressure: the Muscatine study. Pediatrics. 1989;84:633–41.

    PubMed  CAS  Google Scholar 

  5. Berenson GS, Srinivasan SR, Wattigney WA, Harsha DW. Obesity and cardiovascular risk in children. Ann NY Acad Sci. 1993;699:93–103.

    Article  PubMed  CAS  Google Scholar 

  6. Obarzanek E, Wu CO, Cutler JA, Kavey RE, Pearson GD, Daniels SR. Prevalence and incidence of hypertension in adolescent girls. J Pediatr. 2010;157:461–7. 467 e461–465.

    Article  PubMed  Google Scholar 

  7. Chiolero A, Bovet P, Paradis G, Paccaud F. Has blood pressure increased in children in response to the obesity epidemic? Pediatrics. 2007;119:544–53.

    Article  PubMed  Google Scholar 

  8. Zhu H, Yan W, Ge D, Treiber FA, Harshfield GA, Kapuku G, Snieder H, Dong Y. Relationships of cardiovascular phenotypes with healthy weight, at risk of overweight, and overweight in us youths. Pediatrics. 2008;121:115–22.

    Article  PubMed  Google Scholar 

  9. Carvalho JJ, Baruzzi RG, Howard PF, Poulter N, Alpers MP, Franco LJ, Marcopito LF, Spooner VJ, Dyer AR, Elliott P, et al. Blood pressure in four remote populations in the intersalt study. Hypertension. 1989;14:238–46.

    Article  PubMed  CAS  Google Scholar 

  10. Pietinen P, Uusitalo U, Nissinen A. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt cooperative research group. BMJ. 1988;297:319–28.

    Google Scholar 

  11. Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D, Klag MJ. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA. 1997;277:1624–32.

    Article  PubMed  CAS  Google Scholar 

  12. Sinaiko AR, Gomez-Marin O, Prineas RJ. Effect of low sodium diet or potassium supplementation on adolescent blood pressure. Hypertension. 1993;21:989–94.

    Article  PubMed  CAS  Google Scholar 

  13. Whelton P, He J, Appel L, Cutler J, Havas S, Kotchen T, Roccella E, Stout R, Vallbona C, Winston M. Primary prevention of hypertension: clinical and public health advisory from the national high blood pressure education program. JAMA. 2002;288:1882.

    Article  PubMed  Google Scholar 

  14. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. 2006;47:296–308.

    Article  PubMed  CAS  Google Scholar 

  15. National High Blood Pressure Education Program. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2005;114:555–76.

    Google Scholar 

  16. Kavey R, Simons-Morton D, de Jesus J. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents. Full report. 2011 [Updated 5 Jan. 2012]; p. S3.

    Google Scholar 

  17. Brown IJ, Tzoulaki I, Candeias V, Elliott P. Salt intakes around the world: implications for public health. Int J Epidemiol. 2009;38:791–813.

    Article  PubMed  Google Scholar 

  18. Alpert BS, Wilson DK. Stress reactivity in childhood and adolescence. In: Turner JR, Sherwood A, Light K, editors. Individual differences in cardiovascular response to stress: applications to models of cardiovascular disease. Plenum, Inc,. New York, 1992, p. 187–201.

    Google Scholar 

  19. Borghi C, Costa FV, Boschi S, Mussi A, Ambrosioni E. Predictors of stable hypertension in young borderline subjects: a five-year follow-up study. J Cardiovasc Pharmacol. 1986;8 Suppl 5:S138–41.

    Article  PubMed  Google Scholar 

  20. Sica DA, Wilson DK. Sodium, potassium, the sympathetic nervous system, and the renin-angiotensin system: impact on the circadian variability in blood pressure. Totowa: Humana; 2001.

    Google Scholar 

  21. Stabouli S, Papakatsika S, Kotsis V. The role of obesity, salt and exercise on blood pressure in children and adolescents. Expert Rev Cardiovasc Ther. 2011;9:753–61.

    Article  PubMed  Google Scholar 

  22. Matthews KA, Katholi CR, McCreath H, Whooley MA, Williams DR, Zhu S, Markovitz JH. Blood pressure reactivity to psychological stress predicts hypertension in the cardia study. Circulation. 2004;110:74–8.

    Article  PubMed  Google Scholar 

  23. Masters KS, Hill RD, Kircher JC, Lensegrav Benson TL, Fallon JA. Religious orientation, aging, and blood pressure reactivity to interpersonal and cognitive stressors. Ann Behav Med. 2004;28:171–8.

    Article  PubMed  Google Scholar 

  24. Roemmich JN, Smith JR, Epstein LH, Lambiase M. Stress reactivity and adiposity of youth. Obesity (Silver Spring). 2007;15:2303–10.

    Article  Google Scholar 

  25. Barbeau P, Litaker MS, Harshfield GA. Impaired pressure natriuresis in obese youths. Obes Res. 2003;11:745–51.

    Article  PubMed  Google Scholar 

  26. Westmaas JL, Jamner LD. Paradoxical effects of social support on blood pressure reactivity among defensive individuals. Ann Behav Med. 2006;31:238–47.

    Article  PubMed  Google Scholar 

  27. Kaneda R, Kario K, Hoshide S, Umeda Y, Hoshide Y, Shimada K. Morning blood pressure hyper-reactivity is an independent predictor for hypertensive cardiac hypertrophy in a community-dwelling population. Am J Hypertens. 2005;18:1528–33.

    Article  PubMed  Google Scholar 

  28. al'Absi M, Devereux RB, Rao DC, Kitzman D, Oberman A, Hopkins P, Arnett DK. Blood pressure stress reactivity and left ventricular mass in a random community sample of African-American and Caucasian men and women. Am J Cardiol. 2006;97:240–4.

    Article  PubMed  Google Scholar 

  29. Moseley JV, Linden W. Predicting blood pressure and heart rate change with cardiovascular reactivity and recovery: results from 3-year and 10-year follow up. Psychosom Med. 2006;68:833–43.

    Article  PubMed  Google Scholar 

  30. Stewart KJ, Ouyang P, Bacher AC, Lima S, Shapiro EP. Exercise effects on cardiac size and left ventricular diastolic function: relationships to changes in fitness, fatness, blood pressure and insulin resistance. Heart. 2006;92:893–8.

    Article  PubMed  CAS  Google Scholar 

  31. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Porcellati C. Prognostic significance of the white coat effect. Hypertension. 1997;29:1218–24.

    Article  PubMed  CAS  Google Scholar 

  32. Kobrin I, Oigman W, Kumar A, Ventura HO, Messerli FH, Frohlich ED, Dunn FG. Diurnal variation of blood pressure in elderly patients with essential hypertension. J Am Geriatr Soc. 1984;32:896–9.

    PubMed  CAS  Google Scholar 

  33. Verdecchia P, Schillaci G, Guerrieri M, Gatteschi C, Benemio G, Boldrini F, Porcellati C. Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. Circulation. 1990;81:528–36.

    Article  PubMed  CAS  Google Scholar 

  34. Devereux R, Pickering T. Relationship between the level, pattern and variability of ambulatory blood pressure and target organ damage in hypertension. J Hypertens Suppl. 1991;9:S34.

    PubMed  CAS  Google Scholar 

  35. Wilson DK, Sica DA, Devens M, Nicholson SC. The influence of potassium intake on dipper and nondipper blood pressure status in an African-American adolescent population. Blood Press Monit. 1996;1:447–55.

    PubMed  Google Scholar 

  36. Wilson DK, Sica DA, Miller SB. Effects of potassium on blood pressure in salt-sensitive and salt-resistant black adolescents. Hypertension. 1999;34:181–6.

    Article  PubMed  CAS  Google Scholar 

  37. Palacios C, Wigertz K, Martin BR, Braun M, Pratt JH, Peacock M, Weaver CM. Racial differences in potassium homeostasis in response to differences in dietary sodium in girls. Am J Clin Nutr. 2010;91:597–603.

    Article  PubMed  CAS  Google Scholar 

  38. Espeland MA, Kumanyika S, Yunis C, Zheng B, Brown WM, Jackson S, Wilson AC, Bahnson J. Electrolyte intake and nonpharmacologic blood pressure control. Ann Epidemiol. 2002;12:587–95.

    Article  PubMed  Google Scholar 

  39. He FJ, MacGregor GA. Importance of salt in determining blood pressure in children: meta-analysis of controlled trials. Hypertension. 2006;48:861–9.

    Article  PubMed  CAS  Google Scholar 

  40. Savoca MR, Domel Baxter S, Ludwig DA, Evans CD, Mackey ML, Wilson ME, Hanevold C, Harshfield GA. A 4-day sodium-controlled diet reduces variability of overnight sodium excretion in free-living normotensive adolescents. J Am Diet Assoc. 2007;107:490–4.

    Article  PubMed  CAS  Google Scholar 

  41. Leong GM, Kainer G. Diet, salt, anthropological and hereditary factors in hypertension. Child Nephrol Urol. 1992;12:96–105.

    PubMed  CAS  Google Scholar 

  42. Allison S. Fluid, electrolytes and nutrition. Clin Med. 2004;4:573–8.

    Article  PubMed  Google Scholar 

  43. Ge D, Su S, Zhu H, Dong Y, Wang X, Harshfield GA, Treiber FA, Snieder H. Stress-induced sodium excretion: a new intermediate phenotype to study the early genetic etiology of hypertension? Hypertension. 2009;53:262–9.

    Article  PubMed  CAS  Google Scholar 

  44. Tobin MD, Timpson NJ, Wain LV, Ring S, Jones LR, Emmett PM, Palmer TM, Ness AR, Samani NJ, Smith GD, Burton PR. Common variation in the wnk1 gene and blood pressure in childhood: the Avon longitudinal study of parents and children. Hypertension. 2008;52:974–9.

    Article  PubMed  CAS  Google Scholar 

  45. Kojima S, Inenaga T, Matsuoka H, Kuramochi M, Omae T, Nara Y, Yamori Y. The association between salt sensitivity of blood pressure and some polymorphic factors. J Hypertens. 1994;12:797–801.

    Article  PubMed  CAS  Google Scholar 

  46. Weinberger MH, Miller JZ, Fineberg NS, Luft FC, Grim CE, Christian JC. Association of haptoglobin with sodium sensitivity and resistance of blood pressure. Hypertension. 1987;10:443–6.

    Article  PubMed  CAS  Google Scholar 

  47. Guerra A, Monteiro C, Breitenfeld L, Jardim H, Rego C, Silva D, Prata A, Matos J, Pereira A, Santos NT, Bicho M. Genetic and environmental factors regulating blood pressure in childhood: prospective study from 0 to 3 years. J Hum Hypertens. 1997;11:233–8.

    Article  PubMed  CAS  Google Scholar 

  48. Hanevold CD, Pollock JS, Harshfield GA. Racial differences in microalbumin excretion in healthy adolescents. Hypertension. 2008;51:334–8.

    Article  PubMed  CAS  Google Scholar 

  49. Couch SC, Saelens BE, Levin L, Dart K, Falciglia G, Daniels SR. The efficacy of a clinic-based behavioral nutrition intervention emphasizing a dash-type diet for adolescents with elevated blood pressure. J Pediatr. 2008;152:494–501.

    Article  PubMed  Google Scholar 

  50. Cook NL, Ayanian JZ, Orav EJ, Hicks LS. Differences in specialist consultations for cardiovascular disease by race, ethnicity, gender, insurance status, and site of primary care. Circulation. 2009;119:2463–70.

    Article  PubMed  Google Scholar 

  51. Simons-Morton DG, Obarzanek E. Diet and blood pressure in children and adolescents. Pediatr Nephrol. 1997;11:244–9.

    Article  PubMed  CAS  Google Scholar 

  52. van Mierlo LA, Arends LR, Streppel MT, Zeegers MP, Kok FJ, Grobbee DE, Geleijnse JM. Blood pressure response to calcium supplementation: a meta-analysis of randomized controlled trials. J Hum Hypertens. 2006;20:571–80.

    Article  PubMed  CAS  Google Scholar 

  53. Gillman MW, Hood MY, Moore LL, Nguyen US, Singer MR, Andon MB. Effect of calcium supplementation on blood pressure in children. J Pediatr. 1995;127:186–92.

    Article  PubMed  CAS  Google Scholar 

  54. Simons-Morton DG, Hunsberger SA, Van Horn L, Barton BA, Robson AM, McMahon RP, Muhonen LE, Kwiterovich PO, Lasser NL, Kimm SY, Greenlick MR. Nutrient intake and blood pressure in the dietary intervention study in children. Hypertension. 1997;29:930–6.

    Article  PubMed  CAS  Google Scholar 

  55. Sugiyama T, Xie D, Graham-Maar RC, Inoue K, Kobayashi Y, Stettler N. Dietary and lifestyle factors associated with blood pressure among U.S. Adolescents. J Adolesc Health. 2007;40:166–72.

    Article  PubMed  Google Scholar 

  56. Dwyer JH, Dwyer KM, Scribner RA, Sun P, Li L, Nicholson LM, Davis IJ, Hohn AR. Dietary calcium, calcium supplementation, and blood pressure in African American adolescents. Am J Clin Nutr. 1998;68:648–55.

    PubMed  CAS  Google Scholar 

  57. Mu J, Liu Z, Liu F, Xu X, Liang Y, Zhu D. Family-based randomized trial to detect effects on blood pressure of a salt substitute containing potassium and calcium in hypertensive adolescents. Am J Hypertens. 2009;22:943–7.

    Article  PubMed  CAS  Google Scholar 

  58. Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension. 1986;8:II127–34.

    PubMed  CAS  Google Scholar 

  59. Falkner B, Kushner H, Khalsa DK, Canessa M, Katz S. Sodium sensitivity, growth and family history of hypertension in young blacks. J Hypertens Suppl. 1986;4:S381–3.

    PubMed  CAS  Google Scholar 

  60. Wilson DK, Bayer L, Krishnamoorthy JS, Ampey-Thornhill G, Nicholson SC, Sica DA. The prevalence of salt sensitivity in an African-American adolescent population. Ethn Dis. 1999;9:350–8.

    PubMed  CAS  Google Scholar 

  61. Sullivan JM, Ratts TE. Sodium sensitivity in human subjects. Hemodynamic and hormonal correlates. Hypertension. 1988;11:717–23.

    Article  PubMed  CAS  Google Scholar 

  62. Palacios C, Wigertz K, Martin BR, Jackman L, Pratt JH, Peacock M, McCabe G, Weaver CM. Sodium retention in black and white female adolescents in response to salt intake. J Clin Endocrinol Metab. 2004;89:1858–63.

    Article  PubMed  CAS  Google Scholar 

  63. Wilson DK, Sica DA, Miller SB. Ambulatory blood pressure nondipping status in salt-sensitive and salt-resistant black adolescents. Am J Hypertens. 1999;12:159–65.

    Article  PubMed  CAS  Google Scholar 

  64. Harshfield GA, Alpert BS, Pulliam DA, Willey ES, Somes GW, Stapelton FB. Sodium excretion and racial differences in ambulatory blood pressure patterns. Hypertension. 1991;18:813–8.

    Article  PubMed  CAS  Google Scholar 

  65. de la Sierra A, Lluch MM, Coca A, Aguilera MT, Sanchez M, Sierra C, Urbano-Marquez A. Assessment of salt sensitivity in essential hypertension by 24-h ambulatory blood pressure monitoring. Am J Hypertens. 1995;8:970–7.

    Article  PubMed  Google Scholar 

  66. Rocchini AP, Katch V, Kveselis D, Moorehead C, Martin M, Lampman R, Gregory M. Insulin and renal sodium retention in obese adolescents. Hypertension. 1989;14:367–74.

    Article  PubMed  CAS  Google Scholar 

  67. Lurbe E, Alvarez V, Liao Y, Torro I, Cremades B, Redon J, Cooper R. Obesity modifies the relationship between ambulatory blood pressure and natriuresis in children. Blood Press Monit. 2000;5:275–80.

    Article  PubMed  CAS  Google Scholar 

  68. Uzu T, Ishikawa K, Fujii T, Nakamura S, Inenaga T, Kimura G. Sodium restriction shifts circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation. 1997;96:1859–62.

    Article  PubMed  CAS  Google Scholar 

  69. Higashi Y, Oshima T, Ozono R, Nakano Y, Matsuura H, Kambe M, Kajiyama G. Nocturnal decline in blood pressure is attenuated by NaCl loading in salt-sensitive patients with essential hypertension: noninvasive 24-hour ambulatory blood pressure monitoring. Hypertension. 1997;30:163–7.

    Article  PubMed  CAS  Google Scholar 

  70. Harshfield GA, Pulliam DA, Alpert BS. Patterns of sodium excretion during sympathetic nervous system arousal. Hypertension. 1991;17:1156–60.

    Article  PubMed  CAS  Google Scholar 

  71. Light KC, Koepke JP, Obrist PA, Willis PW. Psychological stress induces sodium and fluid retention in men at high risk for hypertension. Science. 1983;220:429–31.

    Article  PubMed  CAS  Google Scholar 

  72. Mahler B, Kamperis K, Schroeder M, Frokiaer J, Djurhuus JC, Rittig S. Sleep deprivation induces excess diuresis and natriuresis in healthy children. Am J Physiol Renal Physiol. 2012;302:F236–43.

    Article  PubMed  CAS  Google Scholar 

  73. Berenson GS, Voors AW, Webber LS, Dalferes Jr ER, Harsha DW. Racial differences of parameters associated with blood pressure levels in children–the Bogalusa heart study. Metabolism. 1979;28:1218–28.

    Article  PubMed  CAS  Google Scholar 

  74. Morgan T, Teow BH, Myers J. The role of potassium in control of blood pressure. Drugs. 1984;28 Suppl 1:188–95.

    Article  PubMed  Google Scholar 

  75. Goto A, Yamada K, Nagoshi H, Ishiyama A, Minami M, Uehara Y, Atarashi K, Hirata Y, Kimura K, Omata M. Relation of 24-h ambulatory blood pressure with plasma potassium in essential hypertension. Am J Hypertens. 1997;10:337–40.

    Article  PubMed  CAS  Google Scholar 

  76. Solomon R, Weinberg MS, Dubey A. The diurnal rhythm of plasma potassium: relationship to diuretic therapy. J Cardiovasc Pharmacol. 1991;17:854–9.

    Article  PubMed  CAS  Google Scholar 

  77. Struthers AD, Reid JL, Whitesmith R, Rodger JC. Effect of intravenous adrenaline on electrocardiogram, blood pressure, and serum potassium. Br Heart J. 1983;49:90–3.

    Article  PubMed  CAS  Google Scholar 

  78. Linas SL. The role of potassium in the pathogenesis and treatment of hypertension. Kidney Int. 1991;39:771–86.

    Article  PubMed  CAS  Google Scholar 

  79. Falkner B, Michel S. Blood pressure response to sodium in children and adolescents. Am J Clin Nutr. 1997;65:618S–21.

    PubMed  CAS  Google Scholar 

  80. Frank GC, Webber LS, Nicklas TA, Berenson GS. Sodium, potassium, calcium, magnesium, and phosphorus intakes of infants and children: Bogalusa heart study. J Am Diet Assoc. 1988;88:801–7.

    PubMed  CAS  Google Scholar 

  81. Pomeranz A, Dolfin T, Korzets Z, Eliakim A, Wolach B. Increased sodium concentrations in drinking water increase blood pressure in neonates. J Hypertens. 2002;20:203–7.

    Article  PubMed  CAS  Google Scholar 

  82. Hawkesworth S, Walker CG, Sawo Y, Fulford AJ, Jarjou LM, Goldberg GR, Prentice A, Prentice AM, Moore SE. Nutritional supplementation during pregnancy and offspring cardiovascular disease risk in the Gambia. Am J Clin Nutr. 2011;94:1853S–60.

    Article  PubMed  CAS  Google Scholar 

  83. Cullen KW, Koehly LM, Anderson C, Baranowski T, Prokhorov A, Basen-Engquist K, Wetter D, Hergenroeder A. Gender differences in chronic disease risk behaviors through the transition out of high school. Am J Prev Med. 1999;17:1–7.

    Article  PubMed  CAS  Google Scholar 

  84. Neumark-Sztainer D, Story M, Resnick MD, Blum RW. Lessons learned about adolescent nutrition from the Minnesota adolescent health survey. J Am Diet Assoc. 1998;98:1449–56.

    Article  PubMed  CAS  Google Scholar 

  85. Berenson GS, Voors AW, Dalferes Jr ER, Webber LS, Shuler SE. Creatinine clearance, electrolytes, and plasma renin activity related to the blood pressure of white and black children–the Bogalusa heart study. J Lab Clin Med. 1979;93:535–48.

    PubMed  CAS  Google Scholar 

  86. Pratt JH, Jones JJ, Miller JZ, Wagner MA, Fineberg NS. Racial differences in aldosterone excretion and plasma aldosterone concentrations in children. N Engl J Med. 1989;321:1152–7.

    Article  PubMed  CAS  Google Scholar 

  87. Miller JZ, Weinberger MH, Daugherty SA, Fineberg NS, Christian JC, Grim CE. Blood pressure response to dietary sodium restriction in healthy normotensive children. Am J Clin Nutr. 1988;47:113–9.

    PubMed  CAS  Google Scholar 

  88. Gillum RF, Elmer PJ, Prineas RJ. Changing sodium intake in children. The Minneapolis children’s blood pressure study. Hypertension. 1981;3:698–703.

    Article  PubMed  CAS  Google Scholar 

  89. Watt GC, Foy CJ, Hart JT, Bingham G, Edwards C, Hart M, Thomas E, Walton P. Dietary sodium and arterial blood pressure: evidence against genetic susceptibility. Br Med J (Clin Res Ed). 1985;291:1525–8.

    Article  CAS  Google Scholar 

  90. Rocchini AP, Key J, Bondie D, Chico R, Moorehead C, Katch V, Martin M. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med. 1989;321:580–5.

    Article  PubMed  CAS  Google Scholar 

  91. Wilson D, Becker J, Alpert B. Prevalence of sodium sensitivity in black versus white adolescents. Circulation. 1992;1:13.

    Google Scholar 

  92. Sacks FM, Obarzanek E, Windhauser MM, Svetkey LP, Vollmer WM, McCullough M, Karanja N, Lin PH, Steele P, Proschan MA, et al. Rationale and design of the dietary approaches to stop hypertension trial (dash). A multicenter controlled-feeding study of dietary patterns to lower blood pressure. Ann Epidemiol. 1995;5:108–18.

    Article  PubMed  CAS  Google Scholar 

  93. Gunther AL, Liese AD, Bell RA, Dabelea D, Lawrence JM, Rodriguez BL, Standiford DA, Mayer-Davis EJ. Association between the dietary approaches to hypertension diet and hypertension in youth with diabetes mellitus. Hypertension. 2009;53:6–12.

    Article  PubMed  CAS  Google Scholar 

  94. Falkner B, Onesti G, Angelakos E. Effect of salt loading on the cardiovascular response to stress in adolescents. Hypertension. 1981;3:II-195–9.

    Article  Google Scholar 

  95. Falkner B, Kushner H. Effect of chronic sodium loading on cardiovascular response in young blacks and whites. Hypertension. 1990;15:36–43.

    Article  PubMed  CAS  Google Scholar 

  96. Sorof JM, Forman A, Cole N, Jemerin JM, Morris RC. Potassium intake and cardiovascular reactivity in children with risk factors for essential hypertension. J Pediatr. 1997;131:87–94.

    Article  PubMed  CAS  Google Scholar 

  97. Fujita T, Ando K. Hemodynamic and endocrine changes associated with potassium supplementation in sodium-loaded hypertensives. Hypertension. 1984;6:184–92.

    PubMed  CAS  Google Scholar 

  98. Svetkey LP, Yarger WE, Feussner JR, DeLong E, Klotman PE. Double-blind, placebo-controlled trial of potassium chloride in the treatment of mild hypertension. Hypertension. 1987;9:444–50.

    Article  PubMed  CAS  Google Scholar 

  99. Cappuccio FP, MacGregor GA. Does potassium supplementation lower blood pressure? A meta-analysis of published trials. J Hypertens. 1991;9:465–73.

    Article  PubMed  CAS  Google Scholar 

  100. Krishna GG, Miller E, Kapoor S. Increased blood pressure during potassium depletion in normotensive men. N Engl J Med. 1989;320:1177–82.

    Article  PubMed  CAS  Google Scholar 

  101. Weinberger MH, Luft FC, Bloch R, Henry DP, Pratt JH, Weyman AE, Rankin LI, Murray RH, Willis LR, Grim CE. The blood pressure-raising effects of high dietary sodium intake: racial differences and the role of potassium. J Am Coll Nutr. 1982;1:139–48.

    PubMed  CAS  Google Scholar 

  102. Fujita T, Ito Y. Salt loads attenuate potassium-induced vasodilation of forearm vasculature in humans. Hypertension. 1993;21:772–8.

    Article  PubMed  CAS  Google Scholar 

  103. Phillips RJ, Robinson BF. The dilator response to k + is reduced in the forearm resistance vessels of men with primary hypertension. Clin Sci (Lond). 1984;66:237–9.

    CAS  Google Scholar 

  104. Campese VM, Romoff MS, Levitan D, Saglikes Y, Friedler RM, Massry SG. Abnormal relationship between sodium intake and sympathetic nervous system activity in salt-sensitive patients with essential hypertension. Kidney Int. 1982;21:371–8.

    Article  PubMed  CAS  Google Scholar 

  105. Stamler R, Stamler J, Riedlinger WF, Algera G, Roberts RH. Family (parental) history and prevalence of hypertension. Results of a nationwide screening program. JAMA. 1979;241:43–6.

    Article  PubMed  CAS  Google Scholar 

  106. Kostic N, Secen S. Circadian rhythm of blood pressure and daily hormonal variations. Med Pregl. 1997;50:37–40.

    PubMed  CAS  Google Scholar 

  107. Patterson TL, Rupp JW, Sallis JF, Atkins CJ, Nader PR. Aggregation of dietary calories, fats, and sodium in Mexican-American and Anglo families. Am J Prev Med. 1988;4:75–82.

    PubMed  CAS  Google Scholar 

  108. Perry CL, Luepker RV, Murray DM, Kurth C, Mullis R, Crockett S, Jacobs Jr DR. Parent involvement with children’s health promotion: the Minnesota home team. Am J Public Health. 1988;78:1156–60.

    Article  PubMed  CAS  Google Scholar 

  109. Wilson DK, Ampey-Thornhill G. The role of gender and family support on dietary compliance in an African American adolescent hypertension prevention study. Ann Behav Med. 2001;23:59–67.

    Article  PubMed  CAS  Google Scholar 

  110. Nader PR, Sallis JF, Patterson TL, Abramson IS, Rupp JW, Senn KL, Atkins CJ, Roppe BE, Morris JA, Wallace JP, et al. A family approach to cardiovascular risk reduction: results from the San Diego family health project. Health Educ Q. 1989;16:229–44.

    Article  PubMed  CAS  Google Scholar 

  111. Cohen RY, Felix MR, Brownell KD. The role of parents and older peers in school-based cardiovascular prevention programs: implications for program development. Health Educ Q. 1989;16:245–53.

    Article  PubMed  CAS  Google Scholar 

  112. Gortmaker SL, Cheung LW, Peterson KE, Chomitz G, Cradle JH, Dart H, Fox MK, Bullock RB, Sobol AM, Colditz G, Field AE, Laird N. Impact of a school-based interdisciplinary intervention on diet and physical activity among urban primary school children: eat well and keep moving. Arch Pediatr Adolesc Med. 1999;153:975–83.

    Article  PubMed  CAS  Google Scholar 

  113. Simons-Morton BG, Baranowski T, Parcel GS, O’Hara NM, Matteson RC. Children’s frequency of consumption of foods high in fat and sodium. Am J Prev Med. 1990;6:218–27.

    PubMed  CAS  Google Scholar 

  114. Wilson DK, Bayer L. The role of diet in hypertension prevention among African-American adolescents. Ann Behav Med. 2002;24(Suppl):S198.

    Google Scholar 

  115. Whitten CF, Stewart RA. The effect of dietary sodium in infancy on blood pressure and related factors. Studies of infants fed salted and unsalted diets for five months at eight months and eight years of age. Acta Paediatr Scand Suppl. 1980;279:1–17.

    PubMed  CAS  Google Scholar 

  116. Trevisan M, Cooper R, Ostrow D, Miller W, Sparks S, Leonas Y, Allen A, Steinhauer M, Stamler J. Dietary sodium, erythrocyte sodium concentration, sodium-stimulated lithium efflux and blood pressure. Clin Sci (Lond). 1981;61 Suppl 7:29s–32.

    CAS  Google Scholar 

  117. Hofman A, Hazebroek A, Valkenburg HA. A randomized trial of sodium intake and blood pressure in newborn infants. JAMA. 1983;250:370–3.

    Article  PubMed  CAS  Google Scholar 

  118. Cooper R, Van Horn L, Liu K, Trevisan M, Nanas S, Ueshima H, Larbi E, Yu CS, Sempos C, LeGrady D, et al. A randomized trial on the effect of decreased dietary sodium intake on blood pressure in adolescents. J Hypertens. 1984;2:361–6.

    PubMed  CAS  Google Scholar 

  119. Calabrese EJ, Tuthill RW. The Massachusetts blood pressure study, part 3. Experimental reduction of sodium in drinking water: effects on blood pressure. Toxicol Ind Health. 1985;1:19–34.

    PubMed  CAS  Google Scholar 

  120. Howe P, Jureidini K, Smith R. Sodium and blood pressure in children–a short-term dietary intervention study. Proc Nutr Soc Aust. 1985;10:121–4.

    Google Scholar 

  121. Tuthill RW, Calabrese EJ. The Massachusetts blood pressure study, part 4. Modest sodium supplementation and blood pressure change in boarding school girls. Toxicol Ind Health. 1985;1:35–43.

    PubMed  CAS  Google Scholar 

  122. Tochikubo O, Sasaki O, Umemura S, Kaneko Y. Management of hypertension in high school students by using new salt titrator tape. Hypertension. 1986;8:1164–71.

    Article  PubMed  CAS  Google Scholar 

  123. Ellison RC, Capper AL, Stephenson WP, Goldberg RJ, Hosmer Jr DW, Humphrey KF, Ockene JK, Gamble WJ, Witschi JC, Stare FJ. Effects on blood pressure of a decrease in sodium use in institutional food preparation: the Exeter-Andover project. J Clin Epidemiol. 1989;42:201–8.

    Article  PubMed  CAS  Google Scholar 

  124. Myers JB. Reduced sodium chloride intake normalises blood pressure distribution. J Hum Hypertens. 1989;3:97–104.

    PubMed  CAS  Google Scholar 

  125. Howe PR, Cobiac L, Smith RM. Lack of effect of short-term changes in sodium intake on blood pressure in adolescent schoolchildren. J Hypertens. 1991;9:181–6.

    Article  PubMed  CAS  Google Scholar 

  126. Mu JJ, Liu ZQ, Liu WM, Liang YM, Yang DY, Zhu DJ, Wang ZX. Reduction of blood pressure with calcium and potassium supplementation in children with salt sensitivity: a 2-year double-blinded placebo-controlled trial. J Hum Hypertens. 2005;19:479–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the National Institutes of Health (R01 HD072153) to Dawn K. Wilson, Ph.D., and by a grant to Sandra M. Coulon, M.A. (F31 AG039930).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn K. Wilson Ph.D., M.A., B.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, D.K., Coulon, S.M. (2013). The Role of Dietary Electrolytes and Childhood Blood Pressure Regulation. In: Flynn, J., Ingelfinger, J., Portman, R. (eds) Pediatric Hypertension. Clinical Hypertension and Vascular Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-490-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-490-6_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-489-0

  • Online ISBN: 978-1-62703-490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics