Skip to main content

CARF Regulates Cellular Senescence and Apoptosis through p53-Dependent and -Independent Pathways

  • Chapter
  • First Online:
New Advances on Disease Biomarkers and Molecular Targets in Biomedicine
  • 987 Accesses

Abstract

The word senescence is derived from Latin word senex, meaning old age. It is a property of all living organisms and defined as a process that leads to functional decline, and hence an increase in vulnerability to a spectrum of diseases eventually leading to death. Evolutionarily, it is understood as a condition that allows continued survival of a population without exhaustive competition for resources. Senescence is widely accepted as an indispensable outcome of life and highly influenced by intrinsic and extrinsic environmental factors that orchestrate a complex network of signaling. The senescent cells show activation of major tumor suppressor proteins (p53 and pRB) and their regulators (p14ARF and p16INK4A). They are resistance to apoptosis, a process of programmed cell death. The present review is focused on the understanding of senescence as a tumor suppressor mechanism. We discuss the regulation of p53 signaling by ARF (alternate reading frame) and CARF (collaborator of ARF) to execute either senescence or apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    PubMed  CAS  Google Scholar 

  2. Goldstein S (1990) Replicative senescence: the human fibroblast comes of age. Science 249:1129–1133

    PubMed  CAS  Google Scholar 

  3. Pignolo RJ, Martin BG, Horton JH, Kalbach AN, Cristofalo VJ (1998) The pathway of cell senescence: WI-38 cells arrest in late G1 and are unable to traverse the cell cycle from a true G0 state. Exp Gerontol 33:67–80

    PubMed  CAS  Google Scholar 

  4. Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113:160–168

    PubMed  CAS  Google Scholar 

  5. Campisi J (2005) Suppressing cancer: the importance of being senescent. Science 309:886–887

    PubMed  CAS  Google Scholar 

  6. Vargas J, Feltes BC, Poloni Jde F, Lenz G, Bonatto D (2012) Senescence; an endogenous anticancer mechanism. Front Biosci 17:2616–2643

    PubMed  Google Scholar 

  7. Smith JR, Pereira-Smith OM (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273:63–67

    PubMed  CAS  Google Scholar 

  8. Campisi J (1996) Replicative senescence: an old lives’ tale? Cell 84:497–500

    PubMed  CAS  Google Scholar 

  9. Marcotte R, Wang E (2002) Replicative senescence revisited. J Gerontol A Biol Sci Med Sci 57:B257–B269

    PubMed  Google Scholar 

  10. Toussaint O, Medrano EE, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35:927–945

    PubMed  CAS  Google Scholar 

  11. Campisi J (2003) Cellular senescence and apoptosis: how cellular responses might influence aging phenotypes. Exp Gerontol 38:5–11

    PubMed  CAS  Google Scholar 

  12. Holliday R et al (1985) Experimental studies on Werner’s syndrome fibroblasts. Adv Exp Med Biol 190:331–339

    PubMed  CAS  Google Scholar 

  13. Martin GM (1982) Syndromes of accelerated aging. Natl Cancer Inst Monogr 60:241–247

    PubMed  CAS  Google Scholar 

  14. Harley CB, Villeponteau B (1995) Telomeres and telomerase in aging and cancer. Curr Opin Genet Dev 5:249–255

    PubMed  CAS  Google Scholar 

  15. Feldser DM, Greider CW (2007) Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11:461–469

    PubMed  CAS  Google Scholar 

  16. Passos JF, Von Zglinicki T (2006) Oxygen free radicals in cell senescence: are they signal transducers? Free Radic Res 40:1277–1283

    PubMed  CAS  Google Scholar 

  17. Karlseder J, Smogorzewska A, de Lange T (2002) Senescence induced by altered telomere state, not telomere loss. Science 295:2446–2449

    PubMed  CAS  Google Scholar 

  18. Martien S, Abbadie C (2007) Acquisition of oxidative DNA damage during senescence: the first step toward carcinogenesis? Ann N Y Acad Sci 1119:51–63

    PubMed  CAS  Google Scholar 

  19. Di Leonardo A, Linke SP, Clarkin K, Wahl GM (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8:2540–2551

    PubMed  Google Scholar 

  20. Sahin E, DePinho RA (2012) Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol 13:397–404

    PubMed  CAS  Google Scholar 

  21. Ohtani N, Takahashi A, Mann DJ, Hara E (2012) Cellular senescence: a double-edged sword in the fight against cancer. Exp Dermatol 21(Suppl 1):1–4

    PubMed  CAS  Google Scholar 

  22. Horn HF, Vousden KH (2007) Coping with stress: multiple ways to activate p53. Oncogene 26:1306–1316

    PubMed  CAS  Google Scholar 

  23. Deng Y, Chan SS, Chang S (2008) Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 8(6):450–458

    PubMed  CAS  Google Scholar 

  24. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355

    PubMed  CAS  Google Scholar 

  25. Reinhardt HC, Schumacher B (2012) The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 28:128–136

    PubMed  CAS  Google Scholar 

  26. Kaul Z, Cesare AJ, Huschtscha LI, Neumann AA, Reddel RR (2011) Five dysfunctional telomeres predict onset of senescence in human cells. EMBO Rep 13:52–59

    PubMed  Google Scholar 

  27. Passos JF, Saretzki G, von Zglinicki T (2007) DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 35:7505–7513

    PubMed  CAS  Google Scholar 

  28. Pan JS, Hong MZ, Ren JL (2009) Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol 15:1702–1707

    PubMed  CAS  Google Scholar 

  29. Lin AW et al (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12:3008–3019

    PubMed  CAS  Google Scholar 

  30. Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12:2997–3007

    PubMed  CAS  Google Scholar 

  31. Minoo P, Jass JR (2006) Senescence and serration: a new twist to an old tale. J Pathol 210:137–140

    PubMed  CAS  Google Scholar 

  32. Cagnol S, Chambard JC (2009) ERK and cell death: mechanisms of ERK-induced cell death–apoptosis, autophagy and senescence. FEBS J 277:2–21

    PubMed  Google Scholar 

  33. Lee AC et al (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274:7936–7940

    PubMed  CAS  Google Scholar 

  34. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    PubMed  CAS  Google Scholar 

  35. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    PubMed  CAS  Google Scholar 

  36. Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10:431–442

    PubMed  CAS  Google Scholar 

  37. Liu B, Chen Y, St Clair DK (2008) ROS and p53: a versatile partnership. Free Radic Biol Med 44:1529–1535

    PubMed  CAS  Google Scholar 

  38. Linford NJ, Schriner SE, Rabinovitch PS (2006) Oxidative damage and aging: spotlight on mitochondria. Cancer Res 66:2497–2499

    PubMed  CAS  Google Scholar 

  39. Wadhwa R et al (1998) Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J Biol Chem 273:29586–29591

    PubMed  CAS  Google Scholar 

  40. Voloboueva LA et al (2008) Overexpression of mitochondrial Hsp70/Hsp75 protects astrocytes against ischemic injury in vitro. J Cereb Blood Flow Metab 28:1009–1016

    PubMed  CAS  Google Scholar 

  41. Liu Y, Liu W, Song XD, Zuo J (2005) Effect of GRP75/mthsp70/PBP74/mortalin overexpression on intracellular ATP level, mitochondrial membrane potential and ROS accumulation following glucose deprivation in PC12 cells. Mol Cell Biochem 268:45–51

    PubMed  CAS  Google Scholar 

  42. Robbins E, Levine EM, Eagle H (1970) Morphologic changes accompanying senescence of cultured human diploid cells. J Exp Med 131:1211–1222

    PubMed  CAS  Google Scholar 

  43. Mitsui Y, Schneider EL (1976) Increased nuclear sizes in senescent human diploid fibroblast cultures. Exp Cell Res 100:147–152

    PubMed  CAS  Google Scholar 

  44. Cristofalo VJ, Sharf BB (1973) Cellular senescence and DNA synthesis. Thymidine incorporation as a measure of population age in human diploid cells. Exp Cell Res 76:419–427

    PubMed  CAS  Google Scholar 

  45. Smith JR, Lumpkin CK Jr (1980) Loss of gene repression activity: a theory of cellular senescence. Mech Ageing Dev 13:387–392

    PubMed  CAS  Google Scholar 

  46. Gerland LM et al (2003) Association of increased autophagic inclusions labeled for beta-galactosidase with fibroblastic aging. Exp Gerontol 38:887–895

    PubMed  CAS  Google Scholar 

  47. Dimri GP et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    PubMed  CAS  Google Scholar 

  48. Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative aging of human endothelial cells. J Cell Sci 113:3613–3622

    PubMed  CAS  Google Scholar 

  49. Blake MJ, Fargnoli J, Gershon D, Holbrook NJ (1991) Concomitant decline in heat-induced hyperthermia and HSP70 mRNA expression in aged rats. Am J Physiol 260:R663–R667

    PubMed  CAS  Google Scholar 

  50. Fargnoli J, Kunisada T, Fornace AJ Jr, Schneider EL, Holbrook NJ (1990) Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proc Natl Acad Sci USA 87:846–850

    PubMed  CAS  Google Scholar 

  51. Choi HS, Lin Z, Li BS, Liu AY (1990) Age-dependent decrease in the heat-inducible DNA sequence-specific binding activity in human diploid fibroblasts. J Biol Chem 265:18005–18011

    PubMed  CAS  Google Scholar 

  52. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 92:4337–4341

    PubMed  CAS  Google Scholar 

  53. Ahmed EK, Picot CR, Bulteau AL, Friguet B (2007) Protein oxidative modifications and replicative senescence of WI-38 human embryonic fibroblasts. Ann N Y Acad Sci 1119:88–96

    PubMed  CAS  Google Scholar 

  54. Cristofalo VJ, Volker C, Francis MK, Tresini M (1998) Age-dependent modifications of gene expression in human fibroblasts. Crit Rev Eukaryot Gene Expr 8:43–80

    PubMed  CAS  Google Scholar 

  55. Duncan EL, Reddel RR (1997) Genetic changes associated with immortalization. A review. Biochemistry (Mosc) 62:1263–1274

    CAS  Google Scholar 

  56. Holliday R (1990) The limited proliferation of cultured human diploid cells: regulation or senescence? J Gerontol 45:B36–B41

    PubMed  CAS  Google Scholar 

  57. Rattan SI (1996) Synthesis, modifications, and turnover of proteins during aging. Exp Gerontol 31:33–47

    PubMed  CAS  Google Scholar 

  58. Kumazaki T, Robetorye RS, Robetorye SC, Smith JR (1991) Fibronectin expression increases during in vitro cellular senescence: correlation with increased cell area. Exp Cell Res 195:13–19

    PubMed  CAS  Google Scholar 

  59. Kulju KS, Lehman JM (1995) Increased p53 protein associated with aging in human diploid fibroblasts. Exp Cell Res 217:336–345

    PubMed  CAS  Google Scholar 

  60. Dumont P et al (2002) Overexpression of apolipoprotein J in human fibroblasts protects against cytotoxicity and premature senescence induced by ethanol and tert-butylhydroperoxide. Cell Stress Chaperones 7:23–35

    PubMed  CAS  Google Scholar 

  61. Gonos ES et al (1998) Cloning and identification of genes that associate with mammalian replicative senescence. Exp Cell Res 240:66–74

    PubMed  CAS  Google Scholar 

  62. Dierick JF et al (2002) Identification of 30 protein species involved in replicative senescence and stress-induced premature senescence. FEBS Lett 531:499–504

    PubMed  CAS  Google Scholar 

  63. Robles SJ, Adami GR (1998) Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16:1113–1123

    PubMed  CAS  Google Scholar 

  64. Fang L et al (1999) p21Waf1/Cip1/Sdi1 induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functional p53. Oncogene 18:2789–2797

    PubMed  CAS  Google Scholar 

  65. Bandyopadhyay D, Gatza C, Donehower LA, Medrano EE (2005) Analysis of cellular senescence in culture in vivo: the senescence-associated beta-galactosidase assay. Curr Protoc Cell Biol Chapter 18:Unit 18.19.

    Google Scholar 

  66. Krishnamurthy J et al (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307

    PubMed  CAS  Google Scholar 

  67. Helmbold H, Galderisi U, Bohn W (2012) The switch from pRb/p105 to Rb2/p130 in DNA damage and cellular senescence. J Cell Physiol 227:508–513

    PubMed  CAS  Google Scholar 

  68. Bond JA et al (1999) Control of replicative life span in human cells: barriers to clonal expansion intermediate between M1 senescence and M2 crisis. Mol Cell Biol 19:3103–3114

    PubMed  CAS  Google Scholar 

  69. Reznikoff CA et al (1996) Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. Cancer Res 56:2886–2890

    PubMed  CAS  Google Scholar 

  70. Jarrard DF et al (1999) p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res 59:2957–2964

    PubMed  CAS  Google Scholar 

  71. Reddel RR (1998) Genes involved in the control of cellular proliferative potential. Ann N Y Acad Sci 854:8–19

    PubMed  CAS  Google Scholar 

  72. West MD, Pereira-Smith OM, Smith JR (1989) Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp Cell Res 184(1):138–147 (in eng)

    PubMed  CAS  Google Scholar 

  73. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    PubMed  CAS  Google Scholar 

  74. Krtolica A, Campisi J (2003) Integrating epithelial cancer, aging stroma and cellular senescence. Adv Gerontol 11:109–116

    PubMed  CAS  Google Scholar 

  75. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334

    PubMed  CAS  Google Scholar 

  76. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    PubMed  Google Scholar 

  77. Harley CB, Vaziri H, Counter CM, Allsopp RC (1992) The telomere hypothesis of cellular aging. Exp Gerontol 27:375–382

    PubMed  CAS  Google Scholar 

  78. d’Adda di Fagagna F et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Google Scholar 

  79. Di Bernardo G, Cipollaro M, Galderisi U (2012) Chromatin modification and senescence. Curr Pharm Des 18:1686–1693

    PubMed  Google Scholar 

  80. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283:1321–1325

    PubMed  CAS  Google Scholar 

  81. Rogan EM et al (1995) Alterations in p53 and p16INK4 expression and telomere length during spontaneous immortalization of Li-Fraumeni syndrome fibroblasts. Mol Cell Biol 15:4745–4753

    PubMed  CAS  Google Scholar 

  82. Kiyono T et al (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84–88

    PubMed  CAS  Google Scholar 

  83. Noble JR et al (1996) Association of extended in vitro proliferative potential with loss of p16INK4 expression. Oncogene 13:1259–1268

    PubMed  CAS  Google Scholar 

  84. Campisi J (2001) Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11:S27–S31

    PubMed  CAS  Google Scholar 

  85. Campisi J (2005) Aging, tumor suppression and cancer: high wire-act! Mech Ageing Dev 126:51–58

    PubMed  CAS  Google Scholar 

  86. Bond JA et al (1995) Mutant p53 rescues human diploid cells from senescence without inhibiting the induction of SDI1/WAF1. Cancer Res 55:2404–2409

    PubMed  CAS  Google Scholar 

  87. Mollevi DG et al (2007) Mutations in TP53 are a prognostic factor in colorectal hepatic metastases undergoing surgical resection. Carcinogenesis 28:1241–1246

    PubMed  CAS  Google Scholar 

  88. Mirzayans R, Andrais B, Scott A, Murray D (2012) New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol 2012:170325

    PubMed  Google Scholar 

  89. Bond JA, Wyllie FS, Wynford-Thomas D (1994) Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene 9:1885–1889

    PubMed  CAS  Google Scholar 

  90. Papazoglu C, Mills AA (2007) p53: at the crossroad between cancer and ageing. J Pathol 211:124–133

    PubMed  CAS  Google Scholar 

  91. Chen W et al (2008) p53-related apoptosis resistance and tumor suppression activity in UVB-induced premature senescent human skin fibroblasts. Int J Mol Med 21:645–653

    PubMed  CAS  Google Scholar 

  92. Naka K, Tachibana A, Ikeda K, Motoyama N (2004) Stress-induced premature senescence in hTERT-expressing ataxia telangiectasia fibroblasts. J Biol Chem 279:2030–2037

    PubMed  CAS  Google Scholar 

  93. Bryan TM, Reddel RR (1994) SV40-induced immortalization of human cells. Crit Rev Oncog 5:331–357

    PubMed  CAS  Google Scholar 

  94. Reddel RR et al (1995) SV40-induced immortalization and ras-transformation of human bronchial epithelial cells. Int J Cancer 61:199–205

    PubMed  CAS  Google Scholar 

  95. Efeyan A et al (2007) Induction of p53-dependent senescence by the MDM2 antagonist nutlin-3a in mouse cells of fibroblast origin. Cancer Res 67:7350–7357

    PubMed  CAS  Google Scholar 

  96. Ichimura K et al (2000) Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res 60:417–424

    PubMed  CAS  Google Scholar 

  97. Gallimore PH et al (1997) Adenovirus type 12 early region 1B 54K protein significantly extends the life span of normal mammalian cells in culture. J Virol 71:6629–6640

    PubMed  CAS  Google Scholar 

  98. Gire V, Wynford-Thomas D (1998) Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol Cell Biol 18:1611–1621

    PubMed  CAS  Google Scholar 

  99. Kaul SC, Reddel RR, Sugihara T, Mitsui Y, Wadhwa R (2000) Inactivation of p53 and life span extension of human diploid fibroblasts by mot-2. FEBS Lett 474:159–164

    CAS  Google Scholar 

  100. Kaul SC, Aida S, Yaguchi T, Kaur K, Wadhwa R (2005) Activation of wild type p53 function by its mortalin-binding, cytoplasmically localizing carboxyl terminus peptides. J Biol Chem 280:39373–39379

    PubMed  CAS  Google Scholar 

  101. Lu WJ et al (2011) Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ 18:1046–1056

    PubMed  CAS  Google Scholar 

  102. Lu WJ et al (2010) Induction of mutant p53-dependent apoptosis in human hepatocellular carcinoma by targeting stress protein mortalin. Int J Cancer 129:1806–1814

    Google Scholar 

  103. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211:90–98

    PubMed  CAS  Google Scholar 

  104. Dulic V et al (1994) p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013–1023

    PubMed  CAS  Google Scholar 

  105. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    PubMed  CAS  Google Scholar 

  106. Alcorta DA et al (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 93:13742–13747

    PubMed  CAS  Google Scholar 

  107. Vaziri H et al (1993) Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 52:661–667

    PubMed  CAS  Google Scholar 

  108. McConnell BB, Starborg M, Brookes S, Peters G (1998) Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr Biol 8:351–354

    PubMed  CAS  Google Scholar 

  109. Vogt M, Haggblom C, Yeargin J, Christiansen-Weber T, Haas M (1998) Independent induction of senescence by p16INK4a and p21CIP1 in spontaneously immortalized human fibroblasts. Cell Growth Differ 9:139–146

    PubMed  CAS  Google Scholar 

  110. Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834

    PubMed  CAS  Google Scholar 

  111. Medcalf AS, Klein-Szanto AJ, Cristofalo VJ (1996) Expression of p21 is not required for senescence of human fibroblasts. Cancer Res 56:4582–4585

    PubMed  CAS  Google Scholar 

  112. Pantoja C, Serrano M (1999) Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 18:4974–4982

    PubMed  CAS  Google Scholar 

  113. Stein GH, Beeson M, Gordon L (1990) Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249:666–669

    PubMed  CAS  Google Scholar 

  114. Futreal PA, Barrett JC (1991) Failure of senescent cells to phosphorylate the RB protein. Oncogene 6:1109–1113

    PubMed  CAS  Google Scholar 

  115. Ludlow JW et al (1989) SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell 56:57–65

    PubMed  CAS  Google Scholar 

  116. Shay JW, Wright WE, Brasiskyte D, Van der Haegen BA (1993) E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 8:1407–1413

    PubMed  CAS  Google Scholar 

  117. Xu HJ et al (1997) Reexpression of the retinoblastoma protein in tumor cells induces senescence and telomerase inhibition. Oncogene 15:2589–2596

    PubMed  CAS  Google Scholar 

  118. Hara E, Tsurui H, Shinozaki A, Nakada S, Oda K (1991) Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem Biophys Res Commun 179:528–534

    PubMed  CAS  Google Scholar 

  119. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    PubMed  CAS  Google Scholar 

  120. Kato D et al (1998) Features of replicative senescence induced by direct addition of antennapedia-p16INK4A fusion protein to human diploid fibroblasts. FEBS Lett 427:203–208

    PubMed  CAS  Google Scholar 

  121. Brenner AJ, Stampfer MR, Aldaz CM (1998) Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene 17:199–205

    PubMed  CAS  Google Scholar 

  122. Huschtscha LI, Reddel RR (1999) p16(INK4a) and the control of cellular proliferative life span. Carcinogenesis 20:921–926

    PubMed  CAS  Google Scholar 

  123. Kamijo T et al (1998) Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 95:8292–8297

    PubMed  CAS  Google Scholar 

  124. Kamijo T et al (1999) Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function. Cancer Res 59:2464–2469

    PubMed  CAS  Google Scholar 

  125. Kamijo T, Bodner S, van de Kamp E, Randle DH, Sherr CJ (1999) Tumor spectrum in ARF-deficient mice. Cancer Res 59:2217–2222

    PubMed  CAS  Google Scholar 

  126. Sharpless NE (2004) Ink4a/Arf links senescence and aging. Exp Gerontol 39:1751–1759

    PubMed  CAS  Google Scholar 

  127. Matheu A et al (2007) Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448:375–379

    PubMed  CAS  Google Scholar 

  128. Sharpless NE (2005) INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res 576:22–38

    PubMed  CAS  Google Scholar 

  129. Matheu A et al (2004) Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging. Genes Dev 18:2736–2746

    PubMed  CAS  Google Scholar 

  130. Honda R, Yasuda H (1999) Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18:22–27

    PubMed  CAS  Google Scholar 

  131. Bates S et al (1998) p14ARF links the tumour suppressors RB and p53. Nature 395:124–125

    PubMed  CAS  Google Scholar 

  132. Stott FJ et al (1998) The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17:5001–5014

    PubMed  CAS  Google Scholar 

  133. Tao W, Levine AJ (1999) P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 96:6937–6941

    PubMed  CAS  Google Scholar 

  134. Tao W, Levine AJ (1999) Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc Natl Acad Sci USA 96:3077–3080

    PubMed  CAS  Google Scholar 

  135. Eymin B, Leduc C, Coll JL, Brambilla E, Gazzeri S (2003) p14ARF induces G2 arrest and apoptosis independently of p53 leading to regression of tumours established in nude mice. Oncogene 22:1822–1835

    PubMed  CAS  Google Scholar 

  136. Weber JD et al (2000) p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev 14:2358–2365

    PubMed  CAS  Google Scholar 

  137. Llanos S, Clark PA, Rowe J, Peters G (2001) Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nat Cell Biol 3:445–452

    PubMed  CAS  Google Scholar 

  138. Menendez S et al (2003) Oligomerization of the human ARF tumor suppressor and its response to oxidative stress. J Biol Chem 278:18720–18729

    PubMed  CAS  Google Scholar 

  139. Martelli F et al (2001) p19ARF targets certain E2F species for degradation. Proc Natl Acad Sci USA 98:4455–4460

    PubMed  CAS  Google Scholar 

  140. Vivo M et al (2001) The human tumor suppressor arf interacts with spinophilin/neurabin II, a type 1 protein-phosphatase-binding protein. J Biol Chem 276:14161–14169

    PubMed  CAS  Google Scholar 

  141. Karayan L et al (2001) Human ARF protein interacts with topoisomerase I and stimulates its activity. Oncogene 20:836–848

    PubMed  CAS  Google Scholar 

  142. Jackson MW, Lindstrom MS, Berberich SJ (2001) MdmX binding to ARF affects Mdm2 protein stability and p53 transactivation. J Biol Chem 276:25336–25341

    PubMed  CAS  Google Scholar 

  143. Sugihara T et al (2001) Pex19p dampens the p19ARF-p53-p21WAF1 tumor suppressor pathway. J Biol Chem 276:18649–18652

    PubMed  CAS  Google Scholar 

  144. Zhao L et al (2003) Cyclin G1 has growth inhibitory activity linked to the ARF-Mdm2-p53 and pRb tumor suppressor pathways. Mol Cancer Res 1:195–206

    PubMed  CAS  Google Scholar 

  145. Rizos H et al (2003) Association of p14ARF with the p120E4F transcriptional repressor enhances cell cycle inhibition. J Biol Chem 278:4981–4989

    PubMed  CAS  Google Scholar 

  146. Woods YL et al (2004) p14 Arf promotes small ubiquitin-like modifier conjugation of Werners helicase. J Biol Chem 279:50157–50166

    PubMed  CAS  Google Scholar 

  147. Qi Y et al (2004) p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431:712–717

    PubMed  CAS  Google Scholar 

  148. Pollice A et al (2004) Functional and physical interaction of the human ARF tumor suppressor with Tat-binding protein-1. J Biol Chem 279:6345–6353

    PubMed  CAS  Google Scholar 

  149. Hasan MK et al (2002) CARF is a novel protein that cooperates with mouse p19ARF (human p14ARF) in activating p53. J Biol Chem 277:37765–37770

    PubMed  CAS  Google Scholar 

  150. Wadhwa R et al (2003) A novel putative collaborator of p19ARF. Exp Gerontol 38:245–252

    PubMed  CAS  Google Scholar 

  151. Sherr CJ (2006) Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6:663–673

    PubMed  CAS  Google Scholar 

  152. Saporita AJ, Maggi LB Jr, Apicelli AJ, Weber JD (2007) Therapeutic targets in the ARF tumor suppressor pathway. Curr Med Chem 14:1815–1827

    PubMed  CAS  Google Scholar 

  153. Wadhwa R et al (2002) A major functional difference between the mouse and human ARF tumor suppressor proteins. J Biol Chem 277:36665–36670

    PubMed  CAS  Google Scholar 

  154. Cheung CT, Hasan MK, Widodo N, Kaul SC, Wadhwa R (2009) CARF: an emerging regulator of p53 tumor suppressor and senescence pathway. Mech Ageing Dev 130:18–23

    PubMed  CAS  Google Scholar 

  155. Hulo N et al (2008) The 20 years of PROSITE. Nucleic Acids Res 36(Database issue):D245–D249

    PubMed  CAS  Google Scholar 

  156. Ginalski K, Elofsson A, Fischer D, Rychlewski L (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19:1015–1018

    PubMed  CAS  Google Scholar 

  157. Hasan MK et al (2004) Alternative reading frame protein (ARF)-independent function of CARF (collaborator of ARF) involves its interactions with p53: evidence for a novel p53-activation pathway and its negative feedback control. Biochem J 380:605–610

    PubMed  CAS  Google Scholar 

  158. Hasan K et al (2009) CARF is a vital dual regulator of cellular senescence and apoptosis. J Biol Chem 284:1664–1672

    PubMed  CAS  Google Scholar 

  159. Hasan MK, Wadhwa R, Kaul SC (2007) CARF binds to three members (ARF, p53, and HDM2) of the p53 tumor-suppressor pathway. Ann N Y Acad Sci 1100:312–315

    Google Scholar 

  160. Hasan MK et al (2008) CARF (collaborator of ARF) interacts with HDM2: evidence for a novel regulatory feedback regulation of CARF-p53-HDM2-p21WAF1 pathway. Int J Oncol 32:663–671

    PubMed  CAS  Google Scholar 

  161. Alexander K, Yang HS, Hinds PW (2003) pRb inactivation in senescent cells leads to an E2F-dependent apoptosis requiring p73. Mol Cancer Res 1:716–728

    PubMed  CAS  Google Scholar 

  162. Rayess H, Wang MB, Srivatsan ES (2012) Cellular senescence and tumor suppressor gene p16. Int J Cancer 130:1715–1725

    PubMed  CAS  Google Scholar 

  163. Karreth FA, Tuveson DA (2009) Modelling oncogenic Ras/Raf signalling in the mouse. Curr Opin Genet Dev 19:4–11

    PubMed  CAS  Google Scholar 

  164. Cheung CT et al (2011) Molecular characterization of apoptosis induced by CARF silencing in human cancer cells. Cell Death Differ 18:589–601

    PubMed  CAS  Google Scholar 

  165. Xiao Z et al (2008) Cyclin B1 is an efficacy-predicting biomarker for Chk1 inhibitors. Biomarkers 13:579–596

    PubMed  CAS  Google Scholar 

  166. Armata HL, Garlick DS, Sluss HK (2007) The ataxia telangiectasia-mutated target site Ser18 is required for p53-mediated tumor suppression. Cancer Res 67:11696–11703

    PubMed  CAS  Google Scholar 

  167. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14:501–513

    PubMed  CAS  Google Scholar 

  168. Bartek J, Bartkova J, Lukas J (2007) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26:7773–7779

    PubMed  CAS  Google Scholar 

  169. Syljuasen RG et al (2005) Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25:3553–3562

    PubMed  CAS  Google Scholar 

  170. Pennarun G et al (2010) ATR contributes to telomere maintenance in human cells. Nucleic Acids Res 38:2955–2963

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil C. Kaul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wadhwa, R., Singh, R., Kaul, Z., Kaul, S.C. (2013). CARF Regulates Cellular Senescence and Apoptosis through p53-Dependent and -Independent Pathways. In: Lee, N., Cheng, C., Luk, J. (eds) New Advances on Disease Biomarkers and Molecular Targets in Biomedicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-456-2_8

Download citation

Publish with us

Policies and ethics