Skip to main content

Mesoporous Silica Nanoparticles for Cancer Therapy

  • Chapter
  • First Online:
  • 1108 Accesses

Abstract

The pursuit of better drug delivery systems for cancer therapy has remained hot areas of research. In this chapter, we review the use of mesoporous silica nanoparticles (MSNs), a particular type of nanomaterials as chemotherapeutics/biological molecules delivery vehicle for cancer treatment. MSNs are synthesized with orderly arranged mesopores of tunable sizes, which endow them with unique structural and functional advantages that can be utilized for drug loading. MSNs have been shown to deliver chemotherapeutics, DNA/siRNA and proteins, or the combinations of drugs to cancer cells. The inner surface of the pores and the outer surface can be separately functionalized to realize effective drug loading and tumor targeting. MSNs offer an ideal platform for cancer drug delivery with promising hopes to be translated into clinical use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  4. Wagner E (2007) Programmed drug delivery: nanosystems for tumor targeting. Expert Opin Biol Ther 7:587–593

    Article  PubMed  CAS  Google Scholar 

  5. Torchilin VP, Lukyanov AN (2003) Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov Today 8:259–266

    Article  PubMed  CAS  Google Scholar 

  6. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330

    Article  PubMed  CAS  Google Scholar 

  7. Chan WCW, Jiang W, Kim BYS, Rutka JT (2007) Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin Drug Deliv 4:621–633

    Article  PubMed  Google Scholar 

  8. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    Article  PubMed  CAS  Google Scholar 

  9. D’Aquino R, Harper T, Vas CR (2006) Nanobiotechnology—fulfilling the promise of nanomedicine. Chem Eng Progr 102:35–37

    Google Scholar 

  10. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine—challenge and perspectives. Angew Chem Int Ed 48:872–897

    Article  CAS  Google Scholar 

  11. Vollath D Nanomaterials: An introduction to synthesis, properties and applications. 2008: John Wiley & Sons, Inc. 362.

    Google Scholar 

  12. Jain KK (2005) Nanotechnology-based drug delivery for cancer. Technol Cancer Res Treat 4:407–416

    PubMed  CAS  Google Scholar 

  13. van Vlerken LE, Amiji MM (2006) Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 3:205–216

    Article  PubMed  Google Scholar 

  14. Shi M, Lu J, Shoichet MS (2009) Organic nanoscale drug carriers coupled with ligands for targeted drug delivery in cancer. J Mater Chem 19:5485–5498

    Article  CAS  Google Scholar 

  15. Cobley CM, Au L, Chen J, Xia Y (2010) Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery. Expert Opin Drug Deliv 7:577–587

    Article  PubMed  CAS  Google Scholar 

  16. Lammers T, Subr V, Ulbrich K, Hennink WE, Storm G, Kiessling F (2010) Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy. Nano Today 5:197–212

    Article  CAS  Google Scholar 

  17. Haidary SM, Corcoles EP, Ali NK (2012) Nanoporous silicon as drug delivery systems for cancer therapies. J Nanomater 2012:15

    Article  Google Scholar 

  18. Wolinsky JB, Colson YL, Grinstaff MW (2012) Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Contr Release 159:14–26

    Article  CAS  Google Scholar 

  19. Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY (2010) Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 6:1952–1967

    Article  PubMed  CAS  Google Scholar 

  20. Slowing II, Vivero-Escoto JL, Wu C-W, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  PubMed  CAS  Google Scholar 

  21. Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7:425–443

    Article  PubMed  CAS  Google Scholar 

  22. Rosenholm JM, Mamaeva V, Sahlgren C, Lindén M (2011) Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine 7:111–120

    Article  Google Scholar 

  23. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  24. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  25. Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J (2000) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311

    Article  Google Scholar 

  26. Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7558

    Article  Google Scholar 

  27. Qiao Z-A, Zhang L, Guo M, Liu Y, Huo Q (2009) Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem Mater 21:3823–3829

    Article  CAS  Google Scholar 

  28. Huh S, Wiench JW, Yoo J-C, Pruski M, Lin VSY (2003) Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method. Chem Mater 15:4247–4256

    Article  CAS  Google Scholar 

  29. Cho K, Wang X, Nie S, Chen Z, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316

    Article  PubMed  CAS  Google Scholar 

  30. Moorthi C, Manavalan R, Kathiresan K (2011) Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci 14:67–77

    Google Scholar 

  31. Luo Z, Cai K, Hu Y, Zhao L, Liu P, Duan L, Yang W (2011) Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. Angew Chem Int Ed 50:640–643

    Article  CAS  Google Scholar 

  32. Bernardos A, Mondragon L, Aznar E, Marcos MD, Martinez-Manez R, Sancenon F, Soto J, Barat JM, Perez-Paya E, Guillem C, Amoros P (2010) Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano 4:6353–6368

    Article  PubMed  CAS  Google Scholar 

  33. Botella P, Gao F, Corma A, Blesa J, Dong L (2009) Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. J Phys Chem B 113:1796–1804

    Article  PubMed  Google Scholar 

  34. Chang B, Guo J, Liu C, Qian J, Yang W (2010) Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem 20:9941–9947

    Article  CAS  Google Scholar 

  35. Hata H, Saeki S, Kimura T, Sugahara Y, Kuroda K (1999) Adsorption of taxol into ordered mesoporous silicas with various pore diameters. Chem Mater 11:1110–1119

    Article  CAS  Google Scholar 

  36. Li X, Zhang J, Gu H (2011) Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles. Langmuir 27:6099–6106

    Article  PubMed  CAS  Google Scholar 

  37. Slowing II, Trewyn BG, Lin VSY (2007) Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J Am Chem Soc 129:8845–8849

    Article  PubMed  CAS  Google Scholar 

  38. Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3:1341–1346

    Article  PubMed  CAS  Google Scholar 

  39. Lu J, Liong M, Sherman S, Xia T, Kovochich M, Nel AE, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles for cancer therapy: energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. Nanobiotechnology 3:89–95

    Article  PubMed  CAS  Google Scholar 

  40. Hom C, Lu J, Liong M, Luo H, Li Z, Zink JI, Tamanoi F (2010) Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown signaling pathways in mammalian cells. Small 6:1185–1190

    Article  PubMed  CAS  Google Scholar 

  41. Li X, Xie QR, Zhang J, Xia W, Gu H (2011) The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials 32:9546–9556

    Article  PubMed  CAS  Google Scholar 

  42. Rosenholm JM, Peuhu E, Bate-Eya LT, Eriksson JE, Sahlgren C, Lindén M (2010) Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. Small 6:1234–1241

    Article  PubMed  CAS  Google Scholar 

  43. Lee C-H, Cheng S-H, Huang IP, Souris JS, Yang C-S, Mou C-Y, Lo L-W (2010) Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew Chem Int Ed 49:8214–8219

    Article  CAS  Google Scholar 

  44. Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, Nel AE (2010) Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 4:4539–4550

    Article  PubMed  CAS  Google Scholar 

  45. Rim HP, Min KH, Lee HJ, Jeong SY, Lee SC (2011) pH-tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. Angew Chem Int Ed 50:8853–8857

    Article  CAS  Google Scholar 

  46. Ma Y, Zhou L, Zheng H, Xing L, Li C, Cui J, Che S (2011) pH-responsive mitoxantrone (MX) delivery using mesoporous silica nanoparticles (MSN). J Mater Chem 21:9483–9486

    Article  CAS  Google Scholar 

  47. Lin CH, Cheng SH, Liao WN, Wei PR, Sung PJ, Weng CF, Lee CH (2012) Mesoporous silica nanoparticles for the improved anticancer efficacy of cis-platin. Int J Pharm 429:138–147

    Article  PubMed  CAS  Google Scholar 

  48. Cauda V, Engelke H, Sauer A, Arcizet D, Bräuchle C, Rädler J, Bein T (2010) Colchicine-loaded lipid bilayer-coated 50 nm mesoporous nanoparticles efficiently induce microtubule depolymerization upon cell uptake. Nano Lett 10:2484–2492

    Article  PubMed  CAS  Google Scholar 

  49. Vadia N, Rajput S (2012) Study on formulation variables of methotrexate loaded mesoporous MCM-41 nanoparticles for dissolution enhancement. Eur J Pharm Sci 45:8–18

    Article  PubMed  CAS  Google Scholar 

  50. Yang H, Zheng K, Zhang Z, Shi W, Jing S, Wang L, Zheng W, Zhao D, Xu J, Zhang P (2012) Adsorption and protection of plasmid DNA on mesoporous silica nanoparticles modified with various amounts of organosilane. J Colloid Interface Sci 369:317–322

    Article  PubMed  CAS  Google Scholar 

  51. Radu DR, Lai C-Y, Jeftinija K, Rowe EW, Jeftinija S, Lin VSY (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126:13216–13217

    Article  PubMed  CAS  Google Scholar 

  52. Nel AE, Xia TA, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3:3273–3286

    Article  PubMed  Google Scholar 

  53. Li X, Chen Y, Wang M, Ma Y, Xia W, Gu H (2013) A mesoporous silica nanoparticle—PEI—fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials 34:1391–1401

    Article  PubMed  CAS  Google Scholar 

  54. Park HS et al (2010) A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery. Nanotechnology 21:225101

    Article  PubMed  Google Scholar 

  55. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  56. Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267

    Article  PubMed  CAS  Google Scholar 

  57. Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16:168–174

    Article  PubMed  CAS  Google Scholar 

  58. Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: The PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184–192

    Article  PubMed  CAS  Google Scholar 

  59. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  60. Jia J, Zhu F, Ma X, Cao ZW, Li YX, Chen YZ (2009) Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 8:111–128

    Article  PubMed  CAS  Google Scholar 

  61. Gasparini G, Longo R, Fanelli M, Teicher BA (2005) Combination of antiangiogenic therapy with other anticancer therapies: results, challenges, and open questions. J Clin Oncol 23:1295–1311

    Article  PubMed  CAS  Google Scholar 

  62. Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK (2006) Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2:458–466

    Article  PubMed  CAS  Google Scholar 

  63. He Q, Gao Y, Zhang L, Zhang Z, Gao F, Ji X, Li Y, Shi J (2011) A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials 32:7711–7720

    Article  PubMed  CAS  Google Scholar 

  64. Liu Q, Zhang J, Sun W, Xie QR, Xia W, Gu H (2012) Delivering hydrophilic and hydrophobic chemotherapeutics simultaneously by magnetic mesoporous silica nanoparticles to inhibit cancer cells. Int J Nanomedicine 7:999–1013

    PubMed  CAS  Google Scholar 

  65. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, He H (2009) Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 5:2673–2677

    Article  PubMed  CAS  Google Scholar 

  66. Bisht S, Maitra A (2009) Dextran–doxorubicin/chitosan nanoparticles for solid tumor therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:415–425

    Article  PubMed  CAS  Google Scholar 

  67. Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6:1794–1805

    Article  PubMed  CAS  Google Scholar 

  68. Li YP, He QJ, Zhang ZW, Gao F, Shi JL (2011) In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small 7:271–280

    Article  PubMed  Google Scholar 

  69. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Contr Release 65:271–284

    Article  CAS  Google Scholar 

  70. Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Lindén M (2009) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3:197–206

    Article  PubMed  CAS  Google Scholar 

  71. Mamaeva V, Rosenholm JM, Bate-Eya LT, Bergman L, Peuhu E, Duchanoy A, Fortelius LE, Landor S, Toivola DM, Linden M, Sahlgren C (2011) Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of notch signaling in cancer. Mol Ther 19:1538–1546

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Liu Ph.D. or Weiliang Xia Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, Q., Xia, W. (2013). Mesoporous Silica Nanoparticles for Cancer Therapy. In: Lee, N., Cheng, C., Luk, J. (eds) New Advances on Disease Biomarkers and Molecular Targets in Biomedicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-456-2_13

Download citation

Publish with us

Policies and ethics