Skip to main content

Stem Cell Therapies for the Treatment of Spinal Cord Injuries: Current Progress in Basic Science and Clinical Research

  • Chapter
  • First Online:
Book cover Emerging Trends in Cell and Gene Therapy
  • 2097 Accesses

Abstract

Spinal cord injury (SCI) is a debilitating condition affecting an estimated 1,275,000 Americans at a cost of over 40 billion dollars each year. The main causes of SCI are automobile accidents, falls, other accidents, and violence such as gunshot or stab wounds. Depending on the precise location and severity of the insult, patients experience a range of motor, sensory, and autonomic impairments resulting either from disruption of ascending and descending axonal tracts or damage to the local neuronal circuitry at the injury site. Although much effort has been dedicated to the development of treatments and cures for this condition, to date, there is no effective way to reinstate motor, sensory, or autonomic functions. The burgeoning field of stem cell research has offered exciting new possibilities for the treatment of SCI, but little success has been realized in the limited clinical trials that have been performed thus far. The following chapter will review the cellular consequences of SCI, the efforts made to counteract these consequences by non-stem cell approaches, the stem cell-based strategies currently being investigated in preclinical studies, and the current state of clinical stem cell trials on patients suffering from SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunge RP, Puckett WR, Becerra JL, Marcillo A, Quencer RM (1993) Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol 59:75–89

    PubMed  CAS  Google Scholar 

  2. Kakulas BA (1999) A review of the neuropathology of human spinal cord injury with emphasis on special features. J Spinal Cord Med 22(2):119–124

    PubMed  CAS  Google Scholar 

  3. Schwab ME, Bartholdi D (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 76(2):319–370

    PubMed  CAS  Google Scholar 

  4. Thuret S, Moon LD, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7(8):628–643

    Article  PubMed  CAS  Google Scholar 

  5. Sahni V, Kessler JA (2010) Stem cell therapies for spinal cord injury. Nat Rev Neurol 6(7):363–372

    Article  PubMed  Google Scholar 

  6. Guest JD, Hiester ED, Bunge RP (2005) Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol 192(2):384–393

    Article  PubMed  CAS  Google Scholar 

  7. Reier PJ (2004) Cellular transplantation strategies for spinal cord injury and translational ­neurobiology. NeuroRx 1(4):424–451, PMCID: 534951

    Article  PubMed  Google Scholar 

  8. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49(6):377–391

    Article  PubMed  CAS  Google Scholar 

  9. Barnabe-Heider F, Frisen J (2008) Stem cells for spinal cord repair. Cell Stem Cell 3(1):16–24

    Article  PubMed  CAS  Google Scholar 

  10. Sahni V, Mukhopadhyay A, Tysseling V, Hebert A, Birch D, McGuire TL et al (2010) BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J Neurosci 30(5):1839–1855

    Article  PubMed  CAS  Google Scholar 

  11. Jones TB, McDaniel EE, Popovich PG (2005) Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr Pharm Des 11(10):1223–1236

    Article  PubMed  CAS  Google Scholar 

  12. Fawcett JW (2006) Overcoming inhibition in the damaged spinal cord. J Neurotrauma 23(3–4):371–383

    Article  PubMed  Google Scholar 

  13. Pettigrew DB, Shockley KP, Crutcher KA (2001) Disruption of spinal cord white matter and sciatic nerve geometry inhibits axonal growth in vitro in the absence of glial scarring. BMC Neurosci 2:8, PMCID: 32296

    Article  PubMed  CAS  Google Scholar 

  14. Horky LL, Galimi F, Gage FH, Horner PJ (2006) Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol 498(4):525–538

    Article  PubMed  Google Scholar 

  15. Yang H, Lu P, McKay HM, Bernot T, Keirstead H, Steward O et al (2006) Endogenous neurogenesis replaces oligodendrocytes and astrocytes after primate spinal cord injury. J Neurosci 26(8):2157–2166

    Article  PubMed  CAS  Google Scholar 

  16. Yamamoto S, Yamamoto N, Kitamura T, Nakamura K, Nakafuku M (2001) Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp Neurol 172(1):115–127

    Article  PubMed  CAS  Google Scholar 

  17. Azari MF, Profyris C, Zang DW, Petratos S, Cheema SS (2005) Induction of endogenous neural precursors in mouse models of spinal cord injury and disease. Eur J Neurol 12(8):638–648

    Article  PubMed  CAS  Google Scholar 

  18. Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7(3):269–277

    Article  PubMed  CAS  Google Scholar 

  19. Raineteau O, Fouad K, Bareyre FM, Schwab ME (2002) Reorganization of descending motor tracts in the rat spinal cord. Eur J Neurosci 16(9):1761–1771

    Article  PubMed  Google Scholar 

  20. Raineteau O, Schwab ME (2001) Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2(4):263–273

    Article  PubMed  CAS  Google Scholar 

  21. SCI-Info-Pages [cited]. http://www.sci-info-pages.com. Accessed on Feb 2012

  22. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322(20):1405–1411

    Article  PubMed  CAS  Google Scholar 

  23. Bracken MB, Shepard MJ, Hellenbrand KG, Collins WF, Leo LS, Freeman DF et al (1985) Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg 63(5):704–713

    Article  PubMed  CAS  Google Scholar 

  24. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M et al (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277(20):1597–1604

    Article  PubMed  CAS  Google Scholar 

  25. Tator CH, Duncan EG, Edmonds VE, Lapczak LI, Andrews DF (1987) Comparison of surgical and conservative management in 208 patients with acute spinal cord injury. Can J Neurol Sci 14(1):60–69

    PubMed  CAS  Google Scholar 

  26. Vaccaro AR, Daugherty RJ, Sheehan TP, Dante SJ, Cotler JM, Balderston RA et al (1997) Neurologic outcome of early versus late surgery for cervical spinal cord injury. Spine (Phila Pa 1976) 22(22):2609–2613

    Article  CAS  Google Scholar 

  27. Hugenholtz H (2003) Methylprednisolone for acute spinal cord injury: not a standard of care. CMAJ 168(9):1145–1146, PMCID: 153684

    PubMed  Google Scholar 

  28. Richardson PM, Issa VM, Aguayo AJ (1984) Regeneration of long spinal axons in the rat. J Neurocytol 13(1):165–182

    Article  PubMed  CAS  Google Scholar 

  29. Richardson PM, McGuinness UM, Aguayo AJ (1980) Axons from CNS neurons regenerate into PNS grafts. Nature 284(5753):264–265

    Article  PubMed  CAS  Google Scholar 

  30. Levi AD, Dancausse H, Li X, Duncan S, Horkey L, Oliviera M (2002) Peripheral nerve grafts promoting central nervous system regeneration after spinal cord injury in the primate. J Neurosurg 96(2 Suppl):197–205

    PubMed  Google Scholar 

  31. Cheng H, Liao KK, Liao SF, Chuang TY, Shih YH (2004) Spinal cord repair with acidic fibroblast growth factor as a treatment for a patient with chronic paraplegia. Spine (Phila Pa 1976) 29(14):E284–E288

    Article  Google Scholar 

  32. Amador MJ, Guest JD (2005) An appraisal of ongoing experimental procedures in human spinal cord injury. J Neurol Phys Ther 29(2):70–86

    PubMed  Google Scholar 

  33. Takami T, Oudega M, Bates ML, Wood PM, Kleitman N, Bunge MB (2002) Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci 22(15):6670–6681

    PubMed  CAS  Google Scholar 

  34. Bamber NI, Li H, Lu X, Oudega M, Aebischer P, Xu XM (2001) Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. Eur J Neurosci 13(2):257–268

    PubMed  CAS  Google Scholar 

  35. Xu XM, Guenard V, Kleitman N, Bunge MB (1995) Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol 351(1):145–160

    Article  PubMed  CAS  Google Scholar 

  36. Pinzon A, Calancie B, Oudega M, Noga BR (2001) Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J Neurosci Res 64(5):533–541

    Article  PubMed  CAS  Google Scholar 

  37. Guest JD, Rao A, Olson L, Bunge MB, Bunge RP (1997) The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp Neurol 148(2):502–522

    Article  PubMed  CAS  Google Scholar 

  38. Menei P, Montero-Menei C, Whittemore SR, Bunge RP, Bunge MB (1998) Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur J Neurosci 10(2):607–621

    Article  PubMed  CAS  Google Scholar 

  39. Xu XM, Guenard V, Kleitman N, Aebischer P, Bunge MB (1995) A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol 134(2):261–272

    Article  PubMed  CAS  Google Scholar 

  40. Chen A, Xu XM, Kleitman N, Bunge MB (1996) Methylprednisolone administration improves axonal regeneration into Schwann cell grafts in transected adult rat thoracic spinal cord. Exp Neurol 138(2):261–276

    Article  PubMed  CAS  Google Scholar 

  41. Ramon-Cueto A, Plant GW, Avila J, Bunge MB (1998) Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci 18(10):3803–3815

    PubMed  CAS  Google Scholar 

  42. Cheng H, Wu JP, Tzeng SF (2002) Neuroprotection of glial cell line-derived neurotrophic ­factor in damaged spinal cords following contusive injury. J Neurosci Res 69(3):397–405

    Article  PubMed  CAS  Google Scholar 

  43. Nikulina E, Tidwell JL, Dai HN, Bregman BS, Filbin MT (2004) The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci U S A 101(23):8786–8790, PMCID: 423273

    Article  PubMed  CAS  Google Scholar 

  44. Pearse DD, Pereira FC, Marcillo AE, Bates ML, Berrocal YA, Filbin MT et al (2004) CAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 10(6):610–616

    Article  PubMed  CAS  Google Scholar 

  45. Schreyer DJ, Jones EG (1987) Growth of corticospinal axons on prosthetic substrates introduced into the spinal cord of neonatal rats. Brain Res 432(2):291–299

    PubMed  CAS  Google Scholar 

  46. Marchand R, Woerly S (1990) Transected spinal cords grafted with in situ self-assembled ­collagen matrices. Neuroscience 36(1):45–60

    Article  PubMed  CAS  Google Scholar 

  47. Goldsmith HS, de la Torre JC (1992) Axonal regeneration after spinal cord transection and reconstruction. Brain Res 589(2):217–224

    Article  PubMed  CAS  Google Scholar 

  48. Khan T, Dauzvardis M, Sayers S (1991) Carbon filament implants promote axonal growth across the transected rat spinal cord. Brain Res 541(1):139–145

    Article  PubMed  CAS  Google Scholar 

  49. Woerly S, Lavallee C, Marchand R (1992) Intracerebral implantation of ionic synthetic ­hydrogels: effect of polar substrata on astrocytosis and axons. J Neural Transplant Plast 3(1):21–34, PMCID: 2565137

    Article  PubMed  CAS  Google Scholar 

  50. Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG et al (2008) Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 28(14):3814–3823, PMCID: 2752951

    Article  PubMed  CAS  Google Scholar 

  51. Moon LD, Asher RA, Rhodes KE, Fawcett JW (2001) Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat Neurosci 4(5):465–466

    PubMed  CAS  Google Scholar 

  52. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156

    Article  PubMed  CAS  Google Scholar 

  53. Thomas KE, Moon LD (2011) Will stem cell therapies be safe and effective for treating spinal cord injuries? Br Med Bull 98:127–142

    Article  PubMed  Google Scholar 

  54. Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L et al (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6(2):e1000029, PMCID: 2642879

    Article  PubMed  CAS  Google Scholar 

  55. Hofstetter CP, Holmstrom NA, Lilja JA, Schweinhardt P, Hao J, Spenger C et al (2005) Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 8(3):346–353

    Article  PubMed  CAS  Google Scholar 

  56. Geffner LF, Santacruz P, Izurieta M, Flor L, Maldonado B, Auad AH et al (2008) Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant 17(12):1277–1293

    Article  PubMed  CAS  Google Scholar 

  57. Sykova E, Homola A, Mazanec R, Lachmann H, Konradova SL, Kobylka P et al (2006) Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 15(8–9):675–687

    Article  PubMed  Google Scholar 

  58. Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO et al (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 25(8):2066–2073

    Article  PubMed  Google Scholar 

  59. Knoller N, Auerbach G, Fulga V, Zelig G, Attias J, Bakimer R et al (2005) Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J Neurosurg Spine 3(3):173–181

    Article  PubMed  Google Scholar 

  60. Feron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S et al (2005) Autologous ­olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128(Pt 12):2951–2960

    Article  PubMed  CAS  Google Scholar 

  61. Chinese Spinal Cord Injury Network (Cited 2012) Lithium and cord blood cell for spinal cord injury. http://www.chinascinet.org/index.php?option=com_content&task=view&id=31&Itemid=57. Accessed on Feb 2012

  62. SciNetUSA. http://www.spinal-injury.net/spinal-cord-injury-reseach-cure.htm. Accessed on Feb 2012

  63. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290, PMCID: 3150836

    Article  PubMed  CAS  Google Scholar 

  64. Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27(8):743–745

    Article  PubMed  CAS  Google Scholar 

  65. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96(1):25–34

    Article  PubMed  CAS  Google Scholar 

  66. Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O et al (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6(7):e182, PMCID: 2475541

    Article  PubMed  CAS  Google Scholar 

  67. Prokhorova TA, Harkness LM, Frandsen U, Ditzel N, Schroder HD, Burns JS et al (2009) Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev 18(1):47–54

    Article  PubMed  CAS  Google Scholar 

  68. McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D et al (1999) Transplanted ­embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5(12):1410–1412

    Article  PubMed  CAS  Google Scholar 

  69. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168(2):342–357

    Article  PubMed  CAS  Google Scholar 

  70. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K et al (2005) Human ­embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25(19):4694–4705

    Article  PubMed  CAS  Google Scholar 

  71. Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS (2010) Human embryonic stem ­cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 28(1):152–163

    PubMed  CAS  Google Scholar 

  72. Han SS, Kang DY, Mujtaba T, Rao MS, Fischer I (2002) Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp Neurol 177(2):360–375

    Article  PubMed  Google Scholar 

  73. Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110(3):385–397

    Article  PubMed  CAS  Google Scholar 

  74. Harper JM, Krishnan C, Darman JS, Deshpande DM, Peck S, Shats I et al (2004) Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci U S A 101(18):7123–7128, PMCID: 406476

    Article  PubMed  CAS  Google Scholar 

  75. Anderson DK, Howland DR, Reier PJ (1995) Fetal neural grafts and repair of the injured spinal cord. Brain Pathol 5(4):451–457

    Article  PubMed  CAS  Google Scholar 

  76. Bregman BS, McAtee M, Dai HN, Kuhn PL (1997) Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 148(2):475–494

    Article  PubMed  CAS  Google Scholar 

  77. Jakeman LB, Reier PJ (1991) Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: a neuroanatomical tracing study of local interactions. J Comp Neurol 307(2):311–334

    Article  PubMed  CAS  Google Scholar 

  78. Kunkel-Bagden E, Bregman BS (1990) Spinal cord transplants enhance the recovery of locomotor function after spinal cord injury at birth. Exp Brain Res 81(1):25–34

    Article  PubMed  CAS  Google Scholar 

  79. Bregman BS, Kunkel-Bagden E, Reier PJ, Dai HN, McAtee M, Gao D (1993) Recovery of function after spinal cord injury: mechanisms underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rats. Exp Neurol 123(1):3–16

    Article  PubMed  CAS  Google Scholar 

  80. Bregman BS, Coumans JV, Dai HN, Kuhn PL, Lynskey J, McAtee M et al (2002) Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Prog Brain Res 137:257–273

    Article  PubMed  CAS  Google Scholar 

  81. Coumans JV, Lin TT, Dai HN, MacArthur L, McAtee M, Nash C et al (2001) Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J Neurosci 21(23):9334–9344

    PubMed  CAS  Google Scholar 

  82. Parr AM, Tator CH, Keating A (2007) Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40(7):609–619

    Article  PubMed  CAS  Google Scholar 

  83. Liu Y, Rao MS (2003) Transdifferentiation–fact or artifact. J Cell Biochem 88(1):29–40

    Article  PubMed  CAS  Google Scholar 

  84. Tello F (1911) La infIuencia de1 neurotropismo en la regeneration de 10s centros nerviosos. Trab Lab Invest Biol 9:123–159

    Google Scholar 

  85. Houle JD (1991) Demonstration of the potential for chronically injured neurons to regenerate axons into intraspinal peripheral nerve grafts. Exp Neurol 113(1):1–9

    Article  PubMed  CAS  Google Scholar 

  86. Doucette R (1995) Olfactory ensheathing cells: potential for glial cell transplantation into areas of CNS injury. Histol Histopathol 10(2):503–507

    PubMed  CAS  Google Scholar 

  87. Radtke C, Sasaki M, Lankford KL, Vogt PM, Kocsis JD (2008) Potential of olfactory ensheathing cells for cell-based therapy in spinal cord injury. J Rehabil Res Dev 45(1):141–151

    Article  PubMed  Google Scholar 

  88. Richter MW, Roskams AJ (2008) Olfactory ensheathing cell transplantation following spinal cord injury: hype or hope? Exp Neurol 209(2):353–367

    Article  PubMed  Google Scholar 

  89. Saberi H, Moshayedi P, Aghayan HR, Arjmand B, Hosseini SK, Emami-Razavi SH et al (2008) Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett 443(1):46–50

    Article  PubMed  CAS  Google Scholar 

  90. Taylor L, Jones L, Tuszynski MH, Blesch A (2006) Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J Neurosci 26(38):9713–9721

    Article  PubMed  CAS  Google Scholar 

  91. Lu P, Yang H, Jones LL, Filbin MT, Tuszynski MH (2004) Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci 24(28):6402–6409

    Article  PubMed  CAS  Google Scholar 

  92. Kadoya K, Tsukada S, Lu P, Coppola G, Geschwind D, Filbin MT et al (2009) Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury. Neuron 64(2):165–172, PMCID: 2773653

    Article  PubMed  CAS  Google Scholar 

  93. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ et al (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 99(4):2199–2204, PMCID: 122342

    Article  PubMed  CAS  Google Scholar 

  94. Mori F, Himes BT, Kowada M, Murray M, Tessler A (1997) Fetal spinal cord transplants rescue some axotomized rubrospinal neurons from retrograde cell death in adult rats. Exp Neurol 143(1):45–60

    Article  PubMed  CAS  Google Scholar 

  95. Bregman BS, Reier PJ (1986) Neural tissue transplants rescue axotomized rubrospinal cells from retrograde death. J Comp Neurol 244(1):86–95

    Article  PubMed  CAS  Google Scholar 

  96. Eagleson KL, Cunningham TJ, Haun F (1992) Rescue of both rapidly and slowly degenerating neurons in the dorsal lateral geniculate nucleus of adult rats by a cortically derived neuron survival factor. Exp Neurol 116(2):156–162

    Article  PubMed  CAS  Google Scholar 

  97. Haun F, Cunningham TJ (1984) Cortical transplants reveal CNS trophic interactions in situ. Brain Res 317(2):290–294

    PubMed  CAS  Google Scholar 

  98. Himes BT, Goldberger ME, Tessler A (1994) Grafts of fetal central nervous system tissue rescue axotomized Clarke’s nucleus neurons in adult and neonatal operates. J Comp Neurol 339(1):117–131

    Article  PubMed  CAS  Google Scholar 

  99. Tang BL, Low CB (2007) Genetic manipulation of neural stem cells for transplantation into the injured spinal cord. Cell Mol Neurobiol 27(1):75–85

    Article  PubMed  CAS  Google Scholar 

  100. Tobias CA, Shumsky JS, Shibata M, Tuszynski MH, Fischer I, Tessler A et al (2003) Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol 184(1):97–113

    Article  PubMed  CAS  Google Scholar 

  101. Jin Y, Fischer I, Tessler A, Houle JD (2002) Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol 177(1):265–275

    Article  PubMed  CAS  Google Scholar 

  102. Liu Y, Kim D, Himes BT, Chow SY, Schallert T, Murray M et al (1999) Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci 19(11):4370–4387

    PubMed  CAS  Google Scholar 

  103. Whittaker MT, Zai LJ, Lee HJ, Pajoohesh-Ganji A, Wu J, Sharp A et al (2012) GGF2 (Nrg1-beta3) treatment enhances NG2(+) cell response and improves functional recovery after spinal cord injury. Glia 60(2):281–294

    Article  PubMed  Google Scholar 

  104. Mabie PC, Mehler MF, Marmur R, Papavasiliou A, Song Q, Kessler JA (1997) Bone morphogenetic proteins induce astroglial differentiation of oligodendroglial-astroglial progenitor cells. J Neurosci 17(11):4112–4120

    PubMed  CAS  Google Scholar 

  105. Wang Y, Cheng X, He Q, Zheng Y, Kim DH, Whittemore SR et al (2011) Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci 31(16):6053–6058, PMCID: 3081104

    Article  PubMed  CAS  Google Scholar 

  106. Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17(1):120–127

    Article  PubMed  CAS  Google Scholar 

  107. Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4(9):703–713

    Article  PubMed  CAS  Google Scholar 

  108. Lemon RN (2008) Descending pathways in motor control. Annu Rev Neurosci 31:195–218

    Article  PubMed  CAS  Google Scholar 

  109. Wolf DP (2008) Nonhuman primate embryonic stem cells: an underutilized resource. Regen Med 3(2):129–131

    Article  PubMed  Google Scholar 

  110. Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, Kobayashi S et al (2005) Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res 80(2):182–190

    Article  PubMed  CAS  Google Scholar 

  111. Yamane J, Nakamura M, Iwanami A, Sakaguchi M, Katoh H, Yamada M et al (2010) Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets. J Neurosci Res 88(7):1394–1405

    PubMed  CAS  Google Scholar 

  112. Rosenzweig ES, Courtine G, Jindrich DL, Brock JH, Ferguson AR, Strand SC et al (2010) Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 13(12):1505–1510, PMCID: 3144760

    Article  PubMed  CAS  Google Scholar 

  113. Magnus T, Liu Y, Parker GC, Rao MS (2008) Stem cell myths. Philos Trans R Soc Lond B Biol Sci 363(1489):9–22, PMCID: 2605483

    Article  PubMed  Google Scholar 

  114. Blight A, Curt A, Ditunno JF, Dobkin B, Ellaway P, Fawcett J et al (2009) Position statement on the sale of unproven cellular therapies for spinal cord injury: the international campaign for cures of spinal cord injury paralysis. Spinal Cord 47(9):713–714

    Article  PubMed  CAS  Google Scholar 

  115. Boyd JG, Doucette R, Kawaja MD (2005) Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. FASEB J 19(7):694–703

    Article  PubMed  CAS  Google Scholar 

  116. Mitsui T, Shumsky JS, Lepore AC, Murray M, Fischer I (2005) Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. J Neurosci 25(42):9624–9636

    Article  PubMed  CAS  Google Scholar 

  117. Park JH, Kim DY, Sung IY, Choi GH, Jeon MH, Kim KK, et al (2011) Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery 70(5):1238–1247

    Google Scholar 

  118. Moviglia GA, Fernandez Vina R, Brizuela JA, Saslavsky J, Vrsalovic F, Varela G et al (2006) Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy 8(3):202–209

    Article  PubMed  CAS  Google Scholar 

  119. Kumar AA, Kumar SR, Narayanan R, Arul K, Baskaran M (2009) Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant 7(4):241–248

    PubMed  Google Scholar 

  120. Callera F, do Nascimento RX (2006) Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Exp Hematol 34(2):130–131

    Article  PubMed  Google Scholar 

  121. Saito F, Nakatani T, Iwase M, Maeda Y, Hirakawa A, Murao Y et al (2008) Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma 64(1):53–59

    Article  PubMed  Google Scholar 

  122. Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M, Chandra R et al (2009) Ex vivo- expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 11(7):897–911

    Article  PubMed  CAS  Google Scholar 

  123. Bhanot Y, Rao S, Ghosh D, Balaraju S, Radhika CR, Satish Kumar KV (2011) Autologous mesenchymal stem cells in chronic spinal cord injury. Br J Neurosurg 25(4):516–522

    Article  PubMed  Google Scholar 

  124. Lima C, Escada P, Pratas-Vital J, Branco C, Arcangeli CA, Lazzeri G et al (2010) Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair 24(1):10–22

    Article  PubMed  Google Scholar 

  125. Chhabra HS, Lima C, Sachdeva S, Mittal A, Nigam V, Chaturvedi D et al (2009) Autologous olfactory [corrected] mucosal transplant in chronic spinal cord injury: an Indian Pilot Study. Spinal Cord 47(12):887–895

    Article  PubMed  CAS  Google Scholar 

  126. Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29(3):191–203; discussion 4–6. PMCID: 1864811

    PubMed  Google Scholar 

  127. Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY et al (2011) Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 20(8):1297–1308

    Article  PubMed  CAS  Google Scholar 

  128. Park HC, Shim YS, Ha Y, Yoon SH, Park SR, Choi BH et al (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 11(5–6):913–922

    Article  PubMed  CAS  Google Scholar 

  129. Stroke Center [cited]. http://www.strokecenter.org. Accessed on Feb 2012

  130. Paul C, Samdani AF, Betz RR, Fischer I, Neuhuber B (2009) Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methods. Spine (Phila Pa 1976) 34(4):328–334, PMCID: 3073497

    Article  Google Scholar 

  131. Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W et al (2008) Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 131(Pt 9):2376–2386, PMCID: 2525447

    Article  PubMed  CAS  Google Scholar 

  132. Iwatsuki K, Yoshimine T, Kishima H, Aoki M, Yoshimura K, Ishihara M et al (2008) Transplantation of olfactory mucosa following spinal cord injury promotes recovery in rats. Neuroreport 19(13):1249–1252

    Article  PubMed  Google Scholar 

  133. Cloutier F, Siegenthaler MM, Nistor G, Keirstead HS (2006) Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm. Regen Med 1(4):469–479

    Article  PubMed  CAS  Google Scholar 

  134. ClinicalTrials [cited]. http://www.clinicaltrials.gov. Accessed on Feb 2012

  135. Hooshmand MJ, Sontag CJ, Uchida N, Tamaki S, Anderson AJ, Cummings BJ (2009) Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery. PLoS One 4(6):e5871, PMCID: 2690693

    Article  PubMed  CAS  Google Scholar 

  136. Geron Clinical Trial Halted (2011) [updated 2011; cited 2012]. http://www.reeve.uci.edu/news-geron-clinical-trial-halted.html. Accessed on Feb 2012

  137. Cizkova D, Kakinohana O, Kucharova K, Marsala S, Johe K, Hazel T et al (2007) Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells. Neuroscience 147(2):546–560

    Article  PubMed  CAS  Google Scholar 

  138. Steeves J, Fawcett J, Tuszynski MH, Lammertse D et al (2007) Experimental treatments for spinal cord injury: what you should know if you are considering participating in a clinical trial. International Campaign for Cures of Spinal Cord Injury Paralysis: 1–40

    Google Scholar 

  139. Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D et al (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45(3):190–205

    Article  PubMed  CAS  Google Scholar 

  140. Steeves JD, Lammertse D, Curt A, Fawcett JW, Tuszynski MH, Ditunno JF et al (2007) Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord 45(3):206–221

    Article  PubMed  CAS  Google Scholar 

  141. Tuszynski MH, Steeves JD, Fawcett JW, Lammertse D, Kalichman M, Rask C et al (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: clinical trial inclusion/exclusion criteria and ethics. Spinal Cord 45(3):222–231

    Article  PubMed  CAS  Google Scholar 

  142. Lammertse D, Tuszynski MH, Steeves JD, Curt A, Fawcett JW, Rask C et al (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: clinical trial design. Spinal Cord 45(3):232–242

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kessler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

North, H., Kessler, J. (2013). Stem Cell Therapies for the Treatment of Spinal Cord Injuries: Current Progress in Basic Science and Clinical Research. In: Danquah, M., Mahato, R. (eds) Emerging Trends in Cell and Gene Therapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-417-3_15

Download citation

Publish with us

Policies and ethics