Advertisement

The Role of Polyphenols in Menopause

  • Isabel Baeza
  • Mónica De la FuenteEmail author
Chapter
Part of the Nutrition and Health book series (NH)

Key Points

  • Menopause gives rise to an increase in the rate of the ageing process, thus causing premature ageing.

  • Oxidative stress occurs with menopause-related loss of oestrogens, this being responsible for premature ageing and much their of its associated physiological deterioration.

  • Polyphenols are a group of pigments widely distributed in plants and are responsible for colouring. Besides, they play a protective role due to their antioxidant activity.

  • Antioxidants, concretely polyphenols, can decrease the oxidative stress situation during menopause.

  • Diets rich in polyphenols, especially flavonoids such as soy food and tea, can decrease the physiological consequences and symptoms of menopause, improving the state of health.

  • Diets and supplements containing flavonoids such as isoflavones (phytoestrogens) could be an alternative to the pharmacological treatments frequently prescribed for menopausal and postmenopausal women.

  • Since polyphenols improve immune system function, which is a marker of health, biological age and a predictor of longevity, the ingestion of these antioxidants could aid in slowing down the ageing process during menopause.

Keywords

Polyphenols Ageing Menopause Oxidative stress Antioxidants Immunosenescence 

Abbreviations

ER

Estrogen receptor

CAT

Catalase

GPx

Glutathione peroxidase

GSH

Reduced glutathione

GSSG

Oxidized glutathione

HRT

Hormonal replacement therapy

Mn-SOD

Mn-Superoxide dismutase

ROS

Reactive oxygen species

TNFα

Tumor necrosis factor alpha

Notes

Acknowledgements

This work was supported by grants of the MCINN (BFU2008-04336; BFU2011-30336), Research Group of UCM (910379ENEROINN) and RETICEF (RD06/0013/0003) (RD12/0043/0018) (ISCIII).

References

  1. 1.
    De la Fuente M, Hernanz A, Vallejo MC. The immune system in the oxidative stress conditions of aging and hypertension: favorable effects of antioxidants and physical exercise. Antioxid Redox Signal. 2005;7(9–10):1356–66.PubMedCrossRefGoogle Scholar
  2. 2.
    De la Fuente M, Miquel J. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des. 2009;15:3003–26.PubMedCrossRefGoogle Scholar
  3. 3.
    Besedovsky HO, Del Rey A. Physiology of psychoneuroimmunology: a personal view. Brain Behav Immun. 2007;21:34–44.PubMedCrossRefGoogle Scholar
  4. 4.
    De la Fuente M. Role of neuroimmunomodulation in aging. Neuroimmunomodulation. 2008;15:213–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;2:298–300.CrossRefGoogle Scholar
  6. 6.
    Alonso-Fernandez P, De la Fuente M. Role of the immune sytem in aging and longevity. Curr Aging Sci. 2011;4(1):78–100.PubMedCrossRefGoogle Scholar
  7. 7.
    De la Fuente M, Cruces J, Hernandez O, et al. Strategies to improve the functions and redox state of the immune system in aged subjects. Curr Pharm Des. 2011;17:3966–93.CrossRefGoogle Scholar
  8. 8.
    Bulpitt CJ, Antikainen RL, Markowe HL, et al. Mortality according to a prior assessment of biological age. Curr Aging Sci. 2009;2:193–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Guayerbas N, Puerto M, Victor VM, et al. Leukocyte function and life span in a murine model of premature immunosenescence. Exp Gerontol. 2002;37:249–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Guayerbas N, De La Fuente M. An impairment of phagocytic function is linked to a shorter life span in two strains of prematurely aging mice. Dev Comp Immunol. 2003;27:339–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Dowling DK, Simmons LW. Reactive oxygen species as universal constraints in life-history evolution. Proc Biol Sci. 2009;276:1737–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Miquel J, Ramirez-Bosca A, Ramirez-Bosca JV, et al. Menopause: a review on the role of oxygen stress and favorable effects of dietary antioxidants. Arch Gerontol Geriatr. 2006;42(3):289–306.PubMedCrossRefGoogle Scholar
  13. 13.
    Richardson SJ, Nelson JF. Follicular depletion during the menopausal transition. Ann N Y Acad Sci. 1990;592:13–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Viña J, Gambini J, Lopez-Grueso R, et al. Females live longer than males: role of oxidative stress. Curr Pharm Des. 2011;17(36):3959–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Nelson HD. Menopause. Lancet. 2008;371:760–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Visioloi F, De la Lastra CA, Andres-Lacueva C, et al. Polyphenols and human health: a prospectus. Crit Rev Food Sci Nutr. 2011;51(6):524–46.CrossRefGoogle Scholar
  17. 17.
    Queen BL, Tollefsbol TO. Polyphenols and aging. Curr Aging Sci. 2010;3:34–42.PubMedGoogle Scholar
  18. 18.
    Manach C, Scalbert A, Morand C, et al. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79:727–47.PubMedGoogle Scholar
  19. 19.
    Dijsselbloem N, Vanden Berghe W, De Naeyer A, et al. Soy isoflavone phyto-pharmaceuticals in interleukin-6 affections. Multi-purpose nutraceuticals at the crossroad of hormone replacement, anti-cancer and anti-inflammatory therapy. Biochem Pharmacol. 2004;68(6):1171–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee M. Phytoestrogens as bioactive agents in functional foods: Canadian regulatory update. J AOAC Int. 2006;89(4):1135–7.PubMedGoogle Scholar
  21. 21.
    Chen D, Milacic V, Chen MS, et al. Tea polyphenols, their biological effects and potential molecular targets. Histol Histopathol. 2008;23(4):487–96.PubMedGoogle Scholar
  22. 22.
    Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sci. 2007;81(7):519–33.PubMedCrossRefGoogle Scholar
  23. 23.
    Ellinger S, Muller N, Stehle P, et al. Consumption of gree tea or green tea products: is there an evidence for antioxidant effects from controlled interventional studies? Phytomedicine. 2011;18(11):903–15.PubMedCrossRefGoogle Scholar
  24. 24.
    Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82(12):1807–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther. 2002;96(2–3):67–202.PubMedCrossRefGoogle Scholar
  26. 26.
    Borras C, Gambini J, Gomez-Cabrera MC, et al. Genistein, a soy isoflavone, up-regulates expression of antioxidant genes: involvement of estrogen receptors, ERK1/2, and NFkappaB. FASEB J. 2006;20(12):2136–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea—a review. J Am Coll Nutr. 2006;25(2):79–99.PubMedGoogle Scholar
  28. 28.
    Jung BH, Jeon MJ, Bai SW. Hormone-dependent aging problems in women. Yonsei Med J. 2008;49(3):345–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Sirtori CR, Arnoldi A, Johnson SK. Phytoestrogens: end of a tale? Ann Med. 2005;37(6):423–38.PubMedCrossRefGoogle Scholar
  30. 30.
    Maclennan AH, Broadbent JL, Lester S, Moore V. Oral oestrogen and combined oestrogen/progestogen therapy versus placebo for hot flushes. Cochrane Database Syst Rev. 2004; (4):CD002978.Google Scholar
  31. 31.
    Lethaby AE, Brown J, Marjoribanks J, Kronenberg F, Roberts H, Eden J. Phytoestrogens for vasomotor menopausal symptoms. Cochrane Database Syst Rev. 2007; (4):CD001395.Google Scholar
  32. 32.
    Shen CL, Wang P, Guerrieri J, Yeh JK, Wang JS. Protective effect of green tea polyphenols on bone loss in middle-aged female rats. Osteoporos Int. 2008;19(7):979–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Rettberg JR, Hamilton RT, Mao Z, To J, Zhao L, Appt SE, et al. The effect of dietary soy isoflavones before and after ovariectomy on hippocampal protein markers of mitochondrial bioenergetics and antioxidant activity in female monkeys. Brain Res. 2011;1379:23–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Kritz-Silverstein D, Von Muhlen D, Barrett-Connor E, Bressel MA. Isoflavones and cognitive function in older women: the SOy and Postmenopausal Health In Aging (SOPHIA) study. Menopause. 2003;10(3):196–202.PubMedCrossRefGoogle Scholar
  35. 35.
    Fournier LR, Ryan Borchers TA, Robison LM, et al. The effects of soy milk and isoflavone supplements on cognitive performance in healthy, postmenopausal women. J Nutr Health Aging. 2007;11(2):155–64.PubMedGoogle Scholar
  36. 36.
    Mandel S, Youdim MB. Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative ­diseases. Free Radic Biol Med. 2004;37(3):304–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Gameiro CM, Romao F, Castelo-Branco C. Menopause and aging: changes in the immune system—a review. Maturitas. 2010;67(4):316–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Baeza I, Alvarado C, Alvarez P, et al. Improvement of leukocyte functions in ovariectomised aged rats after treatment with growth hormone, melatonin, oestrogens or phyto-oestrogens. J Reprod Immunol. 2009;80:70–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Baeza I, De Castro NM, Arranz L, et al. Ovariectomy causes immunosenescence and oxi-inflamm-ageing in peritoneal leukocytes of aged female mice similar to that in aged males. Biogerontology. 2011;12(3):227–38.PubMedCrossRefGoogle Scholar
  40. 40.
    Baeza I, De Castro NM, Gimenez-Llort L, et al. Ovariectomy, a model of menopause in rodents, causes a premature aging of the nervous and immune systems. J Neuroimmunol. 2010;219:90–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Baeza I, Fdez-Tresguerres J, Ariznavarreta C, et al. Effects of growth hormone, melatonin, oestrogens and phytoestrogens on the oxidized glutathione (GSSG)/reduced glutathione (GSH) ratio and lipid peroxidation in aged ovariectomized rats. Biogerontology. 2010;11(6):687–701.PubMedCrossRefGoogle Scholar
  42. 42.
    Hoek A, van Kasteren Y, de Haan-Meulman M, et al. Dysfunction of monocytes and dendritic cells in patients with premature ovarian failure. Am J Reprod Immunol. 1993;30(4):207–17.PubMedCrossRefGoogle Scholar
  43. 43.
    Arranz L, Fernandez C, Rodriguez A, et al. The glutathione precursor N-acetylcysteine improves immune function in postmenopausal women. Free Rad Biol Med. 2008;45:1252–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Gameiro C, Romao F. Changes in the immune system during menopause and aging. Front Biosci (Elite Ed). 2010;2:1299–303.CrossRefGoogle Scholar
  45. 45.
    Ryan-Borchers TA, Park JS, Chew BP, et al. Soy isoflavones modulate immune function in healthy postmenopausal women. Am J Clin Nutr. 2006;83(5):1118–25.PubMedGoogle Scholar
  46. 46.
    Baeza I, de Castro NM, Alvarado C, et al. Improvement of immune cell functions in aged mice treated for five weeks with soybean isoflavones. Ann N Y Acad Sci. 2007;1100:497–504.PubMedCrossRefGoogle Scholar
  47. 47.
    Baeza I, De Castro NM, Arranz L, et al. Soybean and green tea polyphenols improve immune function and redox status in very old ovariectomized mice. Rejuvenation Res. 2010;13(6):665–74.PubMedCrossRefGoogle Scholar
  48. 48.
    Bird MD, Karavitis J, Kovacs EJ. Sex differences and estrogen modulation of the cellular immune response after injury. Cell Immunol. 2008;252(1–2):57–67.PubMedCrossRefGoogle Scholar
  49. 49.
    Yamakuchi M, Bao C, Ferlito M, et al. Epigallocatechin gallate inhibits endothelial exocytosis. Biol Chem. 2008;389(7):935–41.PubMedCrossRefGoogle Scholar
  50. 50.
    Wayne SJ, Rhyne RL, Garry PJ, Goodwin JS. Cell-mediated immunity as a predictor of morbidity and mortality in subjects over 60. J Gerontol. 1990;45(2):M45–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.San Rafael-Nebrija Health Sciences CentreNebrija UniversityMadridSpain
  2. 2.Department of Physiology (Animal Physiology II)Complutense University of MadridMadridSpain

Personalised recommendations