Skip to main content

Dietary Plant Maslinic Acid in Ovariectomy Model of Menopause

  • Chapter
  • First Online:
Nutrition and Diet in Menopause

Part of the book series: Nutrition and Health ((NH))

  • 2574 Accesses

Key Points

  • The relationship between menopause and skeletal health

  • The animal model of menopause and its use in research

  • The background of maslinic acid (including sources of maslinic acid), and pharmacological research into maslinic acid

  • The effects of maslinic acid on the ovariectomy mouse model

  • Maslinic acid’s potential toxicity in animal model

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMD:

Bone mineral density

BMM:

Bone marrow macrophage

RANKL:

Receptor activator of nuclear factor kappa B ligand

RANK:

Receptor activator of nuclear factor kappa B

OPG:

Osteoprotegerin

IL:

Interleukin

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

M-CSF:

Macrophage colony-stimulating factor

PGE2 :

Prostaglandin-E2

TNFa:

Tumor necrosis factor a

TGFb:

Transforming growth factor b

VCD:

4-Vinylcyclohexene diepoxide

GnRH:

Gonadotropin-releasing hormone

LH:

Luteinizing hormone

FSH:

Follicle-stimulating hormone

HIV:

Human immunodeficiency virus

AIDS:

Acquired immunodeficiency syndrome

WHO:

World Health Organization

GLT-1:

Glial glutamate transporter

NF-kB:

Nuclear factor-kappa B

MAPK:

Mitogen-activated protein kinase

GP:

Glycogen phosphorylase

SHR:

Spontaneously hypertensive rats

MMP:

Matrix metallopeptidase

CTR:

Calcitonin receptor

OVX:

Ovariectomy

References

  1. Li C, Yang Z, Li Z, Ma Y, Zhang L, Zheng C, et al. Maslinic acid suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss by regulating RANKL-mediated NF-kappaB and MAPK signaling pathways. J Bone Miner Res. 2011;26(3):644–56.

    Article  PubMed  CAS  Google Scholar 

  2. Mirza FS, Prestwood KM. Bone health and aging: implications for menopause. Endocrinol Metab Clin North Am. 2004;33(4):741–59.

    Article  PubMed  CAS  Google Scholar 

  3. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996;11(3):337–49.

    Article  PubMed  CAS  Google Scholar 

  4. Riggs BL, Khosla S, Melton 3rd LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23(3):279–302.

    Article  PubMed  CAS  Google Scholar 

  5. Van Kempen TA, Milner TA, Waters EM. Accelerated ovarian failure: a novel, chemically induced animal model of menopause. Brain Res. 2011;1379:176–87.

    Article  PubMed  Google Scholar 

  6. Wright LE, Christian PJ, Rivera Z, Van Alstine WG, Funk JL, Bouxsein ML, et al. Comparison of skeletal effects of ovariectomy versus chemically induced ovarian failure in mice. J Bone Miner Res. 2008;23(8):1296–303.

    Article  PubMed  Google Scholar 

  7. Jee WS, Yao W. Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact. 2001;1(3):193–207.

    PubMed  CAS  Google Scholar 

  8. Lo JC, Burnett-Bowie SA, Finkelstein JS. Bone and the perimenopause. Obstet Gynecol Clin North Am. 2011;38(3):503–17.

    Article  PubMed  Google Scholar 

  9. Gass M, Dawson-Hughes B. Preventing osteoporosis-related fractures: an overview. Am J Med. 2006;119(4 Suppl 1):S3–11.

    Article  PubMed  Google Scholar 

  10. Thompson DD, Simmons HA, Pirie CM, Ke HZ. FDA guidelines and animal models for osteoporosis. Bone. 1995;17(4 Suppl):125S–33.

    PubMed  CAS  Google Scholar 

  11. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA. The laboratory rat as an animal model for osteoporosis research. Comp Med. 2008;58(5):424–30.

    PubMed  CAS  Google Scholar 

  12. Li M, Shen Y, Wronski TJ. Time course of femoral neck osteopenia in ovariectomized rats. Bone. 1997;20(1):55–61.

    Article  PubMed  CAS  Google Scholar 

  13. Wronski TJ, Dann LM, Horner SL. Time course of vertebral osteopenia in ovariectomized rats. Bone. 1989;10(4):295–301.

    Article  PubMed  CAS  Google Scholar 

  14. Li XJ, Jee WS. Adaptation of diaphyseal structure to aging and decreased mechanical loading in the adult rat: a densitometric and histomorphometric study. Anat Rec. 1991;229(3):291–7.

    Article  PubMed  CAS  Google Scholar 

  15. Li M, Shen Y, Qi H, Wronski TJ. Comparative study of skeletal response to estrogen depletion at red and yellow marrow sites in rats. Anat Rec. 1996;245(3):472–80.

    Article  PubMed  CAS  Google Scholar 

  16. Ma YF, Ke HZ, Jee WS. Prostaglandin E2 adds bone to a cancellous bone site with a closed growth plate and low bone turnover in ovariectomized rats. Bone. 1994;15(2):137–46.

    Article  PubMed  CAS  Google Scholar 

  17. Miller SC, Bowman BM, Miller MA, Bagi CM. Calcium absorption and osseous organ-, tissue-, and envelope-specific changes following ovariectomy in rats. Bone. 1991;12(6):439–46.

    Article  PubMed  CAS  Google Scholar 

  18. Gallagher JC. Effect of early menopause on bone mineral density and fractures. Menopause. 2007;14(3 Pt 2):567–71.

    Article  PubMed  Google Scholar 

  19. Sniekers YH, Weinans H, Bierma-Zeinstra SM, van Leeuwen JP, van Osch GJ. Animal models for osteoarthritis: the effect of ovariectomy and estrogen treatment—a systematic approach. Osteoarthritis Cartilage. 2008;16(5):533–41.

    Article  PubMed  CAS  Google Scholar 

  20. Wen X, Zhang P, Liu J, Zhang L, Wu X, Ni P, et al. Pentacyclic triterpenes. Part 2: Synthesis and biological evaluation of maslinic acid derivatives as glycogen phosphorylase inhibitors. Bioorg Med Chem Lett. 2006;16(3):722–6.

    Article  PubMed  CAS  Google Scholar 

  21. Martin R, Carvalho J, Ibeas E, Hernandez M, Ruiz-Gutierrez V, Nieto ML. Acidic triterpenes compromise growth and survival of astrocytoma cell lines by regulating reactive oxygen species accumulation. Cancer Res. 2007;67(8):3741–51.

    Article  PubMed  CAS  Google Scholar 

  22. Li C, Yang Z, Zhai C, Qiu W, Li D, Yi Z, et al. Maslinic acid potentiates the anti-tumor activity of tumor necrosis factor alpha by inhibiting NF-kappaB signaling pathway. Mol Cancer. 2010;9:73.

    Article  PubMed  Google Scholar 

  23. Lin CC, Huang CY, Mong MC, Chan CY, Yin MC. Antiangiogenic potential of three triterpenic acids in human liver cancer cells. J Agric Food Chem. 2011;59(2):755–62.

    Article  PubMed  CAS  Google Scholar 

  24. Elahi MM, Kong YX, Matata BM. Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev. 2009;2(5):259–69.

    Article  PubMed  Google Scholar 

  25. Napolitano A, Manini P, d’Ischia M. Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr Med Chem. 2011;18(12):1832–45.

    Article  PubMed  CAS  Google Scholar 

  26. Marquez Martin A, de la Puerta Vazquez R, Fernandez-Arche A, Ruiz-Gutierrez V. Supressive effect of maslinic acid from pomace olive oil on oxidative stress and cytokine production in stimulated murine macrophages. Free Radic Res. 2006;40(3):295–302.

    Article  PubMed  CAS  Google Scholar 

  27. Marquez-Martin A, De La Puerta R, Fernandez-Arche A, Ruiz-Gutierrez V, Yaqoob P. Modulation of cytokine secretion by pentacyclic triterpenes from olive pomace oil in human mononuclear cells. Cytokine. 2006;36(5–6):211–7.

    Article  PubMed  CAS  Google Scholar 

  28. Xu HX, Zeng FQ, Wan M, Sim KY. Anti-HIV triterpene acids from Geum japonicum. J Nat Prod. 1996;59(7):643–5.

    Article  PubMed  CAS  Google Scholar 

  29. Braca A, Morelli I, Mendez J, Battinelli L, Braghiroli L, Mazzanti G. Antimicrobial triterpenoids from Licania heteromorpha. Planta Med. 2000;66(8):768–9.

    Article  PubMed  CAS  Google Scholar 

  30. Moneriz C, Marin-Garcia P, Bautista JM, Diez A, Puyet A. Parasitostatic effect of maslinic acid. II. Survival increase and immune protection in lethal Plasmodium yoelii-infected mice. Malar J. 2011;10:103.

    Article  PubMed  CAS  Google Scholar 

  31. Moneriz C, Mestres J, Bautista JM, Diez A, Puyet A. Multi-targeted activity of maslinic acid as an antimalarial natural compound. FEBS J. 2011;278(16):2951–61.

    Article  PubMed  CAS  Google Scholar 

  32. Chan L, Terashima T, Urabe H, Lin F, Kojima H. Pathogenesis of diabetic neuropathy: bad to the bone. Ann N Y Acad Sci. 2011;1240:70–6.

    Article  PubMed  CAS  Google Scholar 

  33. Bikman BT, Summers SA. Ceramides as modulators of cellular and whole-body metabolism. J Clin Invest. 2011;121(11):4222–30.

    Article  PubMed  CAS  Google Scholar 

  34. Liu J, Sun H, Duan W, Mu D, Zhang L. Maslinic acid reduces blood glucose in KK-Ay mice. Biol Pharm Bull. 2007;30(11):2075–8.

    Article  PubMed  CAS  Google Scholar 

  35. Guan T, Qian Y, Tang X, Huang M, Huang L, Li Y, et al. Maslinic acid, a natural inhibitor of glycogen phosphorylase, reduces cerebral ischemic injury in hyperglycemic rats by GLT-1 up-regulation. J Neurosci Res. 2011;89(11):1829–39.

    Article  PubMed  CAS  Google Scholar 

  36. Qian Y, Guan T, Tang X, Huang L, Huang M, Li Y, et al. Maslinic acid, a natural triterpenoid compound from Olea europaea, protects cortical neurons against oxygen-glucose deprivation-induced injury. Eur J Pharmacol. 2011;670(1):148–53.

    Article  PubMed  CAS  Google Scholar 

  37. Doggrell SA, Brown L. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res. 1998;39(1):89–105.

    Article  PubMed  CAS  Google Scholar 

  38. Dongmo AB, Azebaze AG, Donfack FM, Dimo T, Nkeng-Efouet PA, Devkota KP, et al. Pentacyclic triterpenoids and ceramide mediate the vasorelaxant activity of Vitex cienkowskii via involvement of NO/cGMP pathway in isolated rat aortic rings. J Ethnopharmacol. 2011;133(1):204–12.

    Article  PubMed  CAS  Google Scholar 

  39. Fernandez-Navarro M, Peragon J, Amores V, De La Higuera M, Lupianez JA. Maslinic acid added to the diet increases growth and protein-turnover rates in the white muscle of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol. 2008;147(2):158–67.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Luo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Luo, J., Liu, M. (2013). Dietary Plant Maslinic Acid in Ovariectomy Model of Menopause. In: Hollins Martin, C., Watson, R., Preedy, V. (eds) Nutrition and Diet in Menopause. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-373-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-373-2_33

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-372-5

  • Online ISBN: 978-1-62703-373-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics