Skip to main content

Magnesium Metabolism in Menopause

  • Chapter
  • First Online:
Nutrition and Diet in Menopause

Key Points

  • Magnesium is a major mineral which is regulated at the level of kidney, bone and intestine.

  • Parathormone (PTH), calcitonin, vitamin D, estrogen and cytokines are involved in regulation of magnesium.

  • Menopause is associated with various endocrine changes and also alterations in magnesium metabolism.

  • Oestrogen deficiency associated with menopause causes alteration in the metabolism of magnesium at the level of kidney, bone and intestine.

  • Oestrogen deficiency induces various molecular and genetic changes which affect the uptake, intracellular transport and basolateral extrusion of magnesium in kidney and intestine.

  • Oestrogen deficiency in menopause, also induces alteration in maturation, differentiation, activity, lifespan and cytokine secretion of osteoblasts and osteoclasts, leading to increased bone resorption and hence alteration in the metabolism of the bone mineral—magnesium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions





Transient receptor potential melastatin


Transient receptor potential vanilloid


Proximal convoluted tubule


Distal convoluted tubule


Collecting duct


Extracellular fluid


Intracellular fluid




Vitamin D receptor


Retinoid receptor


Vitamin D responsive element


Ribonucleic acid


Deoxyribonucleic acid


Insulin like growth factor


Oestrogen receptor




Growth hormone




Macrophage colony stimulating factor


Tumour necrosis factor




Reactive oxygen species


Repressor protein of oestrogen receptor activity


Platelet-derived growth factor




Receptor activator of nuclear factor kappa beta


Receptor activator of nuclear factor kappa beta ligand


Recommended daily allowance


  1. Maria JL, Cristina PM, Manuel B. Role of cellular magnesium in health and human disease. Front Biosci. 2004;9:262–76.

    Article  Google Scholar 

  2. Food and Nutrition Board, Institute of Medicine. DRI dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press; 1997.

    Google Scholar 

  3. Hardwick LL, Jones MR, Brautbar N, Lee DB. Site and mechanism of intestinal magnesium absorption. Miner Electrolyte Metab. 1990;16:174–80.

    PubMed  CAS  Google Scholar 

  4. Fine KD, Santa ACA, Porter JL, Fordtran JS. Intestinal absorption of magnesium from food and supplements. J Clin Invest. 1991;88:396–402.

    Article  PubMed  CAS  Google Scholar 

  5. Quamme GA, Christian DR. Epithelial magnesium transport and regulation by kidney. Front Biosci. 2000;5:d694–711.

    Article  PubMed  CAS  Google Scholar 

  6. Brink EJ, Beynen AC. Nutrition and magnesium absorption: a review. Prog Food Nutr Sci. 1992;16:125–62.

    PubMed  CAS  Google Scholar 

  7. Schweigel M, Martens H. Magnesium transport in the gastrointestinal tract. Front Biosci. 2000;1:D666–77.

    Article  Google Scholar 

  8. Anast C, Kennedy R, Volk G, Adamson L. Studies of active transport of calcium, magnesium, and sulfate by the small intestine. J Pediatr. 1964;65:1105.

    Google Scholar 

  9. Wilz DR, Gray RW, Dominguez JH, Lemann Jr J. Plasma l,25-(OH)2-vitamin D concentrations and net intestinal calcium, phosphate, and magnesium absorption in humans. Am J Clin Nutr. 1979;32:2052–60.

    PubMed  CAS  Google Scholar 

  10. Qi X, Hoenderop JG, Bindels RJ. Regulation of magnesium reabsorption in DCT. Pflugers Arch. 2009;458:89–98.

    Article  Google Scholar 

  11. Groenestege WTM, Hoenderop JG, Lambertus VDH, Nine K, Bindels RJ. The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and oestrogens. J Am Soc Nephrol. 2006;17:1035–43.

    Article  PubMed  CAS  Google Scholar 

  12. Quamme GA, de Rouffignac C. Epithelial magnesium transport and regulation by the kidney. Front Biosci. 2000;5:D694–711.

    Article  PubMed  CAS  Google Scholar 

  13. Wong NLM, Quamme GA, Dirks JH. Effects of acid–base disturbances on renal handling of magnesium in the kidney. Clin Sci. 1986;70:277–84.

    PubMed  CAS  Google Scholar 

  14. Domingues JH, Gray RW, Leman JJR. Dietary phosphate deprivation in women and men: effect on mineral and acid balance, parathyroid hormone and metabolism of 25-OH-vitamin D. J Clin Endocrinol Metab. 1976;43:1056–68.

    Article  Google Scholar 

  15. Theobalt S, Alexander RT, Groenestege WMT, Hoenderop JG, Bindels RJ. EGF increases TRPM6 activity and surface expression. J Am Soc Nephrol. 2009;20:78–85.

    Article  Google Scholar 

  16. Theobault S, Gang C, Veneseelar H, Qi X, Bindels RJ, Hoenderop JG. Role of the alpha kinase domain in transient receptor potential melastatin 6 channel and regulation by intracellular ATP. J Biol Chem. 2008;283(29):19999–20007.

    Article  Google Scholar 

  17. Gang C, Theobault S, van der Wijst J, van der Kemp A, Lasonder E, Bindels RJ, et al. RACK1 inhibits TRPM6 activity via phosphorylation of the fused alpha-kinase domain. Curr Biol. 2008;18(3):168–76.

    Article  Google Scholar 

  18. Gang C, Van der Wijst J, Vann der Kemp A, Van Zeeland F, Bindels RJ, Hoenderop JG, et al. Regulation of the epithelial Mg2+ channel TRPM6 by oestrogen and the associated repressor protein of oestrogen receptor activity (REA). J Biol Chem. 2009;284(22):14788–95.

    Article  Google Scholar 

  19. McNair P, Christiansen C, Transbol I. Effect of menopause and estrogen substitutional therapy on magnesium metabolism. Miner Electrolyte Metab. 1984;10(2):84–7.

    PubMed  CAS  Google Scholar 

  20. Tucker K, Kiel DP, Hannan MT, Felson DT. Magnesium intake is associated with bone mineral density in elderly women. J Bone Miner Res. 1995;10:S466.

    Google Scholar 

  21. Rude RK, Singer FR, Gruber HE. Skeletal and hormonal effects of magnesium deficiency. J Am Coll Nutr. 2009;28(2):131–41.

    PubMed  CAS  Google Scholar 

  22. McIntosh TK. Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: a review. J Am Chem Soc. 1993;89:2719–25.

    Google Scholar 

  23. Weglicki WB, Dickens BF, Wagner TL, Chemielinska JJ, Phillips TM. Immunoregulation by neuropeptides in magnesium deficiency: ex vivo effect of enhanced substance P production on circulation T lymphocytes from magnesium-deficient mice. Magnes Res. 1996;9:3–11.

    PubMed  CAS  Google Scholar 

  24. Liu CC, Yeh JK, Aloia JF. Magnesium directly stimulates osteoblast proliferation. J Bone Miner Res. 1988;3:S104.

    Google Scholar 

  25. Elie A, Robert M. Importance of melastatin-like transient receptor potential 7 and magnesium in the stimulation of osteoblast proliferation and migration by platelet-derived growth factor. Am J Physiol Cell Physiol. 2009;297:C360–8.

    Article  Google Scholar 

  26. Creedon A, Flynn A, Cashman K. The effect of moderately and severely restricted dietary magnesium intakes on bone composition and bone metabolism in the rat. Br J Nutr. 1999;82:63–71.

    PubMed  CAS  Google Scholar 

  27. New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton SC, et al. Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health. Am J Clin Nutr. 2000;71:142–51.

    PubMed  CAS  Google Scholar 

  28. Yasuhiro T, Yasutaka K, Ritsuko M, Yukihiro T, Kazuharu S, Seiichiro A. Dietary magnesium supplementation affects bone metabolism and dynamic strength of bone in ovariectomized rats. J Nutr. 2000;130:216–20.

    Google Scholar 

  29. Hasan A, Oguzhan D, Dilek Y, Hulya G, Nilgun M, Isik K, et al. Short-term oral magnesium supplementation suppresses bone turnover in postmenopausal osteoporotic women. Biol Trace Elem Res. 2010;133(2):136–43.

    Article  Google Scholar 

  30. Robert KR, Helen EG, Livia YW, Angelica F. Immunolocalization of RANKL is increased and OPG decreased during dietary magnesium deficiency in the rat. Nutr Metab. 2005;2:24.

    Article  Google Scholar 

  31. Naveenta G, Kushdeep Singh A. The status of trace elements after menopause: a comparative study. J Clin Diagn Res. 2011;5(4):795–7.

    Google Scholar 

  32. Sreekantha, Satisha TG, Avinash SS, Manjunatha Goud BK, Remya, Sudhakar GK, Rangaswamy R, Raghavendra VT. Magnesium and calcium levels in early surgical menopause. J Clin Diagn Res. 2011; 5(1):55–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. S. Avinash M.B.B.S., M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Avinash, S.S., Sreekantha, Goud, B.K.M. (2013). Magnesium Metabolism in Menopause. In: Hollins Martin, C., Watson, R., Preedy, V. (eds) Nutrition and Diet in Menopause. Nutrition and Health. Humana Press, Totowa, NJ.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-372-5

  • Online ISBN: 978-1-62703-373-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics