Skip to main content

Physical Activity and Mood. The Endocrine Connection

  • Chapter
  • First Online:
Endocrinology of Physical Activity and Sport

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Various researchers have pointed out the affective changes brought about by physical activity (PA) [1–5]. The mood changes documented are generally an increase in “positive” mood states, such as calmness and pleasantness, and a decrease in “negative” mood states, such as depression and anger. The improvement in overall mood scores is seen after most types of exercise, both aerobic and anaerobic, that last for a minimal period of time or intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lichtman S, Poser EG. The effects of exercise on mood and cognitive functioning. J Psychosom Res. 1983;27:43–52.

    Article  PubMed  CAS  Google Scholar 

  2. Wildmann J, Kruger A, Schmole M, Niemann J, Matthaei H. Increase of circulating β-endorphin-like immunoreactivity correlates with the change in feeling of pleasantness after running. Life Sci. 1986;38:997–1003.

    Article  PubMed  CAS  Google Scholar 

  3. Thirlaway K, Benton D. Participation in physical activity and cardiovascular fitness have different effects on mental health and mood. J Psychosom Res. 1992;36:657–65.

    Article  PubMed  CAS  Google Scholar 

  4. Daniel M, Martin AD, Carter J. Opiate receptor blockade by naltrexone and mood state after acute physical activity. Br J Sports Med. 1992;26:111–5.

    Article  PubMed  CAS  Google Scholar 

  5. Yeung RR. The acute effects of exercise on mood state. J Psychosom Res. 1996;40:123–41.

    Article  PubMed  CAS  Google Scholar 

  6. Mondin GW, Morgan WP, Piering PN, Stegner AJ, Stotesbery CL, Trine MR, et al. Psychological consequences of exercise deprivation in habitual exercisers. Med Sci Sports Exerc. 1996;28:1199–203.

    Article  PubMed  CAS  Google Scholar 

  7. Appenzeller O, Wood SC. Peptides and exercise at high and low altitudes. Int J Sports Med. 1992;13:S135–40.

    Article  PubMed  Google Scholar 

  8. McNair DM, Lorr M, Droppleman LF. Profile of mood states manual. San Diego: Educational and Industrial Testing Service; 1971.

    Google Scholar 

  9. Howlett TA. Hormonal responses to exercise and training, a short review. Clin Endocrinol. 1987;26:723–42.

    Article  CAS  Google Scholar 

  10. Lazar-Wesley E, Hadcock JR, Malbon CC, Kunos G, Ishac EJ. Tissue-specific regulation of alpha 1B, beta 1 and beta 2 adrenergic receptor mRNAs by thyroid state in the rat. Endocrinology. 1991;129:1116–8.

    Article  PubMed  CAS  Google Scholar 

  11. Liewendahal K, Helenius T, Naveri H, Tikkanen H. Fatty acid-induced increase in serum dialyzable free thyroxine after physical exercise: implication for nonthyroidal illness. J Clin Endocrinol Metab. 1992;74:1361–5.

    Article  Google Scholar 

  12. Holsboer F. Neuroendocrinology of mood disorders. In: Bloom FE, Kupfer DJ, editors. Psychopharmacology: the fourth generation of progress. New York, NY: Raven; 1995. p. 957–69.

    Google Scholar 

  13. Schwarz L, Kindermann W. β-endorphin, adrenocorticotropic hormone, cortisol and catecholamines during aerobic and anaerobic exercise. Eur J Appl Physiol. 1990;61:165–71.

    Article  CAS  Google Scholar 

  14. Hackney AC, Premo MC, McMurray RG. Influence of aerobic versus anaerobic exercise on the relationship between reproductive hormones in men. J Sports Sci. 1995;13:305–11.

    Article  PubMed  CAS  Google Scholar 

  15. Gerra G, Volpi R, Delsignore R, Caccavari R, Gaggiotti MT, Montani G, et al. ACTH and β-endorphin responses to physical exercise in adolescent women tested for anxiety and frustration. Psychiatry Res. 1992;41:179–86.

    Article  PubMed  CAS  Google Scholar 

  16. Fibiger W, Singer G, Miller AJ, Armstrong S, Datar M. Cortisol and catecholamines changes as functions of time-of-day and self-reported mood. Neurosci Biobehav Rev. 1984;8:523–30.

    Article  PubMed  CAS  Google Scholar 

  17. Goodwin GM, Muir WJ, Seckl JR, Bennie J, Carroll S, Dick H, et al. The effects of cortisol infusion upon hormone secretion from the anterior pituitary and subjective mood in depressive illness and in controls. J Affective Disord. 1992;26:73–84.

    Article  CAS  Google Scholar 

  18. Arena B, Maffulli N, Maffulli F, Morleo MA. Reproductive hormones and menstrual changes with exercise in female athletes. Sports Med. 1995;19:278–85.

    Article  PubMed  CAS  Google Scholar 

  19. Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med. 1998;129:229–40.

    PubMed  CAS  Google Scholar 

  20. Stahl SM. Basic psychopharmacology of antidepressants, part 2: estrogen as an adjunct to antidepressant treatment. J Clin Psychiatry. 1998;59 Suppl 4:15–24.

    PubMed  CAS  Google Scholar 

  21. Biegon A, Reches A, Snyder L, McEwen BS. Serotonergic and noradrenergic receptors in the rat brain: modulation by chronic exposure to ovarian hormones. Life Sci. 1983;32:2015–21.

    Article  PubMed  CAS  Google Scholar 

  22. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, et al. The effects of supra-physiological doses of testosterone on muscle size and strength in normal men. N Engl J Med. 1996;335:1–7.

    Article  PubMed  CAS  Google Scholar 

  23. Taylor LA, Rachman SJ. The effects of blood sugar level changes on cognitive function, affective state and somatic symptoms. J Behav Med. 1988;11:279–91.

    Article  PubMed  CAS  Google Scholar 

  24. Kreider RB, Hill D, Horton G, Dowens M, Smith S, Anders B. Effects of carbohydrate supplementation during intense training on dietary patterns, psychological status, and performance. Int J Sports Nutr. 1995;5:125–35.

    CAS  Google Scholar 

  25. Perusse L, Collier G, Gagnon J, Leon AS, Rao DC, Skinner JS, et al. Acute and chronic effects of exercise on leptin levels in humans. J Appl Physiol. 1997;83:5–10.

    PubMed  CAS  Google Scholar 

  26. Kohrt WM, Landt M, Birge SJ. Serum leptin levels are reduced in response to exercise training, but not hormone replacement therapy in older women. J Clin Endocrinol Metab. 1996;81:3980–5.

    Article  PubMed  CAS  Google Scholar 

  27. Leal-Cerro A, Garcia-Luna PP, Astorga R, Parejo J, Peino R, Dieguez C, et al. Serum leptin levels in male marathon athletes before and after the marathon run. J Clin Endocrinol Metab. 1998;83:2376–9.

    Article  PubMed  CAS  Google Scholar 

  28. Racette SB, Coppack SW, Landt M, Klein S. Leptin production during moderate-intensity aerobic exercise. J Clin Endocrinol Metab. 1997;82:2275–7.

    Article  PubMed  CAS  Google Scholar 

  29. Hickey MS, Considine RV, Israel RG, Mahar TL, McCammon MR, Tyndall GL, et al. Leptin is related to body fat content in male distance runners. Am J Physiol. 1996;271:E938–40.

    PubMed  CAS  Google Scholar 

  30. Koistinen HA, Tuominen JA, Ebeling P, Heiman ML, Stephens TW, Koivisto VA. The effect of exercise on leptin concentration in healthy men and in type 1 diabetic patients. Med Sci Sports Exerc. 1998;30:805–10.

    Article  PubMed  CAS  Google Scholar 

  31. Wahlestedt C, Pich EM, Koob GF, Yee F, Heilig M. Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligonucleotide. Science. 1993;259:528–31.

    Article  PubMed  CAS  Google Scholar 

  32. Williams JT, North RA, Tokimasa T. Inward rectification of resting and opiate activated potassium currents in rat locus coeruleus neurons. J Neurosci. 1988;8:4299–306.

    PubMed  CAS  Google Scholar 

  33. Moyse E, Marcel D, Leonard K, Beaudet A. Electron microscopic distribution of Mu opioid receptors on noradrenergic neurons of the locus coeruleus. Eur J Neurosci. 1997;9:128–39.

    Article  PubMed  CAS  Google Scholar 

  34. Spyraki C, Fibiger HC, Phillips AG. Attenuation of heroin reward in rats by disruption of the mesolimbic dopamine system. Psychopharmacology. 1983;79:278–83.

    Article  PubMed  CAS  Google Scholar 

  35. Di Chiara G, North RA. Neurobiology of opiate abuse. Trends Pharmacol Sci. 1992;13:185–93.

    Article  PubMed  Google Scholar 

  36. Goldfarb AH, Jamurtas AZ. β-endorphin response to exercise: an update. Sports Med. 1997;24:8–16.

    Article  PubMed  CAS  Google Scholar 

  37. Evans AAL, Khan S, Smith ME. Evidence for a hormonal action of β-endorphin to increase glucose uptake in resting and contracting skeletal muscle. J Endocrinol. 1997;155:387–92.

    Article  PubMed  CAS  Google Scholar 

  38. Hickey MS, Trappe SW, Blostein AC, Edwards BA, Goodpaster B, Craig BW. Opioid anatagonism alters blood glucose homeostasis during exercise in humans. J Appl Physiol. 1994;76:2452–60.

    PubMed  CAS  Google Scholar 

  39. Christie MJ, Chesher GB. Physical dependence on psychologically released endogenous opiates. Life Sci. 1982;30:1173–7.

    Article  PubMed  CAS  Google Scholar 

  40. Miller PF, Light KC, Bragdon EE, Ballenger MN, Herbst MC, Maixner W, et al. Beta endorphin response to exercise and mental stress in patients with ischemic heart disease. J Psychosom Res. 1993;37:455–65.

    Article  PubMed  CAS  Google Scholar 

  41. Gerra G, Zaimovic A, Franchini D, Palladino M, Giucastro G, Reali N, et al. Neuroendocrine responses of healthy volunteers to techno-music, relationships with personality traits and emotional state. Int J Psychophysiol. 1998;28:99–111.

    Article  PubMed  CAS  Google Scholar 

  42. Hikita H, Etsuda H, Takase B, Satomura K, Kurita A, Nakamura H. Extent of ischemic stimulus and plasma β-endorphin levels in silent myocardial ischemia. Am Heart J. 1998;135:813–8.

    Article  PubMed  CAS  Google Scholar 

  43. Schwartz L, Kindermann W. β-endorphin, catecholamines and cortisol during exhaustive endurance exercise. Int J Sports Med. 1989;2:160–5.

    Google Scholar 

  44. Kraemer WJ, Dziados JE, Marchitelly LJ, Gordon SE, Harman EA, Mello R, et al. Effects of different heavy-resistance exercise protocols on plasma β-endorphin concentrations. J Appl Physiol. 1993;74:450–9.

    PubMed  CAS  Google Scholar 

  45. Kraemer RR, Acevedo EO, Dzewaltowski D, Kilgore JL, Kraemer GR, Castracane VD. Effects of low-volume resistive exercise on beta-endorphin and cortisol concentrations. Int J Sports Med. 1996;17:12–6.

    Article  PubMed  CAS  Google Scholar 

  46. Taylor DV, Boyajian JG, James N, Woods D, Chicz-Demet A, Wilson AF, et al. Acidosis stimulates β-endorphin release during exercise. J Appl Physiol. 1994;77:1913–8.

    PubMed  CAS  Google Scholar 

  47. Elias AN, Wilson AF, Naqvi S, Pandian MR. Effects of blood pH and blood lactate on growth hormone, prolactin, and gonadotropin release after acute exercise in male volunteers. Proc Soc Exp Biol Med. 1997;214:156–60.

    PubMed  CAS  Google Scholar 

  48. Chaouloff F. Physical exercise and brain monoamines: a review. Acta Physiol Scand. 1989;137:1–13.

    Article  PubMed  CAS  Google Scholar 

  49. Vrana KE. Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem. 1996;67:443–62.

    PubMed  Google Scholar 

  50. Blomstrand E, Celsing F, Newsholme EA. Changes in plasma concentrations of aromatic and branched chain amino acids during sustained exercise in man and their possible role in fatigue. Acta Physiol Scand. 1988;133:115–21.

    Article  PubMed  CAS  Google Scholar 

  51. Sze PY, Neckers L, Towle AC. Glucocorticoids as a regulatory factor for brain tryptophan hydroxylase. J Neurochem. 1976;26:169–73.

    PubMed  CAS  Google Scholar 

  52. Fernstrom JD, Wurtman RJ. Brain serotonin content: physiological dependence on plasma tryptophan levels. Science. 1971;173:149–52.

    Article  PubMed  CAS  Google Scholar 

  53. Blomstrand E, Perrett D, Parry-Billings M, Newsholme EA. Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat. Acta Physiol Scand. 1989;136:473–81.

    Article  PubMed  CAS  Google Scholar 

  54. Wagenmakers AJM, Brookes JH, Coakley JH, Reilly T, Edwards RHT. Exercise induced activation of the branched-chain-2-oxo-acid dehydrogenase in human muscle. Eur J Appl Physiol. 1989;59:159–67.

    Article  CAS  Google Scholar 

  55. Hassmen P, Blomstrand E, Ekblom B, Newsholme EA. Branched chain amino acid supplementation during 30-km competitive run: mood and cognitive performance. Nutrition. 1994;10:405–10.

    PubMed  CAS  Google Scholar 

  56. Lakka TA, Venalainen JM, Rauramaa R, Salonen R, Tuomilehto J, Salonen JT. Relation of leisure-time physical activity and cardiorespiratory fitness to the risk of acute myocardial infarction. N Engl J Med. 1994;330:1549–54.

    Article  PubMed  CAS  Google Scholar 

  57. Haapanen N, Miilunpalo S, Vuori I, Oja P, Pasanen M. Characteristics of leisure time physical activity associated with decreased risk of premature all-cause and cardiovascular disease mortality in middle-aged men. Am J Epidemiol. 1996;143:870–80.

    Article  PubMed  CAS  Google Scholar 

  58. Pols MA, Peeters PH, Twisk JW, Kemper HC, Grobbee DE. Physical activity and cardiovascular disease risk profile in women. Am J Epidemiol. 1997;146:322–8.

    Article  PubMed  CAS  Google Scholar 

  59. Lynch J, Helmrich SP, Lakka TA, Kaplan GA, Cohen RD, Salonen R, et al. Moderately intense physical activities and high levels of cardiorespiratory fitness reduce the risk of non-insulin-dependent diabetes mellitus in middle-aged men. Arch Intern Med. 1996;156:1307–14.

    Article  PubMed  CAS  Google Scholar 

  60. Gillum RF, Mussolino ME, Ingram DD. Physical activity and stroke incidence in women and men. Am J Epidemiol. 1996;143:860–9.

    Article  PubMed  CAS  Google Scholar 

  61. Thune I, Brenn T, Lund E, Gaard M. Physical activity and the risk of breast cancer. N Engl J Med. 1997;336:1269–75.

    Article  PubMed  CAS  Google Scholar 

  62. Thune I, Lund E. The influence of physical activity on lung-cancer risk. A prospective study of 81,516 men and women. Int J Cancer. 1997;70:57–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliot M. Berry MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dubnov, G., Berry, E.M. (2013). Physical Activity and Mood. The Endocrine Connection. In: Constantini, N., Hackney, A. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-314-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-314-5_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-313-8

  • Online ISBN: 978-1-62703-314-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics