Skip to main content

Docosahexaenoic Acid and Angiogenesis: A Review

  • Chapter
  • First Online:
  • 2782 Accesses

Part of the book series: Nutrition and Health ((NH))

Abstract

Angiogenesis is involved in the enlargement of preexisting vessels that sprout and divide or the formation of capillaries through trans-endothelial cell bridges (1). The development of a complex, mature vascular system is a process that requires endothelial cell activation, proliferation, and migration as well as the fundamental support of mural cells. The accessory cells such as pericytes and vascular smooth muscle cells interact with endothelial cells to form the complex network of vessels. Blood vessels form an extensive network of arteries, veins, arterioles, venules, and capillaries that transport liquids, solutes, gases, macromolecules, and cells within the vertebrate body. The ­average adult body has almost 100,000 miles of blood vessels. Angiogenic signals ­promote endothelial cell proliferation, increased resistance to apoptosis, changes in proteolytic balance, cytoskeletal reorganization, migration, and differentiation and formation of a new vascular lumen. In the adult body, blood vessels acquire a quiescent, nonangiogenic state but retain considerable growth potential that is activated during wound healing as well as in certain pathological processes, such as ocular and inflammatory disorders and cancers. In fact, angiogenesis is also a part of the pathogenesis of several human diseases and plays a key role in tumor growth and metastasis. While it is desirable to block the growth of new blood vessels under these circumstances, the controlled stimulation of angiogenesis is beneficial in other conditions when the local blood supply is impaired. N-3 long-chain polyunsaturated fatty acids (LCPUFAs) inhibit tumor angiogenesis (2, 3). In contrast, docosohexaenoic acid, 22:6n-3 (DHA), an important member of the n-3 fatty acid family, increases the synthesis of vascular endothelial growth factor (VEGF) with a concomitant increase in tube formation (as a measure of angiogenesis) in first-trimester human placental cells (4). This pro-angiogenic effect of DHA on placenta cells makes it nutritionally more important during pregnancy. We aim to review herein the modulation of the angiogenesis process by DHA in different cell systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007;8(6):464–78.

    Article  PubMed  CAS  Google Scholar 

  2. Sterescu AE, Rousseau-Harsany E, Farrell C, Powell J, David M, Dubois J. The potential efficacy of omega-3 fatty acids as anti-angiogenic agents in benign vascular tumors of infancy. Med Hypotheses. 2006;66(6):1121–4.

    Article  PubMed  CAS  Google Scholar 

  3. Sapieha P, Stahl A, Chen J, Seaward MR, Willett KL, Krah NM, et al. 5-Lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of omega-3 polyunsaturated fatty acids. Sci Transl Med. 2011;3(69):69ra12.

    Article  PubMed  Google Scholar 

  4. Johnsen GM, Basak S, Weedon-Fekjaer MS, Staff AC, Duttaroy AK. Docosahexaenoic acid stimulates tube formation in first trimester trophoblast cells, HTR8/SVneo. Placenta. 2011;32(9):626–32.

    Article  PubMed  CAS  Google Scholar 

  5. Gealekman O, Burkart A, Chouinard M, Nicoloro SM, Straubhaar J, Corvera S. Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab. 2008;295(5):E1056–64.

    Article  PubMed  CAS  Google Scholar 

  6. Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235(4787):442–7.

    Article  PubMed  CAS  Google Scholar 

  7. Aiello LP, Wong JS. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int Suppl. 2000;77:S113–9.

    Article  PubMed  CAS  Google Scholar 

  8. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25.

    Article  PubMed  CAS  Google Scholar 

  9. Yang SP, Morita I, Murota SI. Eicosapentaenoic acid attenuates vascular endothelial growth factor-induced proliferation via inhibiting Flk-1 receptor expression in bovine carotid artery endothelial cells. J Cell Physiol. 1998;176(2):342–9.

    Article  PubMed  CAS  Google Scholar 

  10. Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes. 1997;46(9):1473–80.

    Article  PubMed  CAS  Google Scholar 

  11. Charnock-Jones DS, Sharkey AM, Rajput-Williams J, Burch D, Schofield JP, Fountain SA, et al. Identification and localization of alternately spliced mRNAs for vascular endothelial growth factor in human uterus and estrogen regulation in endometrial carcinoma cell lines. Biol Reprod. 1993;48(5):1120–8.

    Article  PubMed  CAS  Google Scholar 

  12. Charnock-Jones DS, Sharkey AM, Boocock CA, Ahmed A, Plevin R, Ferrara N, et al. Vascular endothelial growth factor receptor localization and activation in human trophoblast and choriocarcinoma cells. Biol Reprod. 1994;51(3):524–30.

    Article  PubMed  CAS  Google Scholar 

  13. Torry DS, Torry RJ. Angiogenesis and the expression of vascular endothelial growth factor in endometrium and placenta. Am J Reprod Immunol. 1997;37(1):21–9.

    Article  PubMed  CAS  Google Scholar 

  14. Fairbrother WJ, Christinger HW, Cochran AG, Fuh G, Keenan CJ, Quan C, et al. Novel peptides selected to bind vascular endothelial growth factor target the receptor-binding site. Biochemistry. 1998;37(51):17754–64.

    Article  PubMed  CAS  Google Scholar 

  15. Fairbrother WJ, Champe MA, Christinger HW, Keyt BA, Starovasnik MA. Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure. 1998;6(5):637–48.

    Article  PubMed  CAS  Google Scholar 

  16. Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 2007;19(10):2003–12.

    Article  PubMed  CAS  Google Scholar 

  17. Cao R, Xue Y, Hedlund EM, Zhong Z, Tritsaris K, Tondelli B, et al. VEGFR1-mediated pericyte ablation links VEGF and PlGF to cancer-associated retinopathy. Proc Natl Acad Sci U S A. 2010;107(2):856–61.

    Article  PubMed  CAS  Google Scholar 

  18. Cao Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal. 2009;2(59):re1.

    Article  PubMed  Google Scholar 

  19. Chaballe L, Schoenen J, Franzen R. Placental growth factor: a tissue modelling factor with therapeutic potentials in neurology? Acta Neurol Belg. 2011;111(1):10–7.

    PubMed  Google Scholar 

  20. Reynolds LP, Redmer DA. Angiogenesis in the placenta. Biol Reprod. 2001;64(4):1033–40.

    Article  PubMed  CAS  Google Scholar 

  21. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.

    PubMed  CAS  Google Scholar 

  22. Mandard S, Zandbergen F, Tan NS, Escher P, Patsouris D, Koenig W, et al. The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J Biol Chem. 2004;279(33):34411–20.

    Article  PubMed  CAS  Google Scholar 

  23. Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, et al. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem. 2000;275(37):28488–93.

    Article  PubMed  CAS  Google Scholar 

  24. Lee JH, Seo JM, Kim M, Kim JC. Cloning of cDNA for a novel fibrinogen/angiopoietin-related protein, FARP. Mol Cells. 2001;11(1):100–4.

    PubMed  CAS  Google Scholar 

  25. Gonzalez-Muniesa P, de Oliveira C, Perez de Heredia F, Thompson MP, Trayhurn P. Fatty acids and hypoxia stimulate the expression and secretion of the adipokine ANGPTL4 (angiopoietin-like protein 4/fasting-induced adipose factor) by human adipocytes. J Nutrigenet Nutrigenomics. 2011;4(3):146–53.

    Article  PubMed  CAS  Google Scholar 

  26. Hermann LM, Pinkerton M, Jennings K, Yang L, Grom A, Sowders D, et al. Angiopoietin-like-4 is a potential angiogenic mediator in arthritis. Clin Immunol. 2005;115(1):93–101.

    Article  PubMed  CAS  Google Scholar 

  27. Murata M, Yudo K, Nakamura H, Chiba J, Okamoto K, Suematsu N, et al. Hypoxia upregulates the expression of angiopoietin-like-4 in human articular chondrocytes: role of angiopoietin-like-4 in the expression of matrix metalloproteinases and cartilage degradation. J Orthop Res. 2009;27(1):50–7.

    Article  PubMed  CAS  Google Scholar 

  28. Chomel C, Cazes A, Faye C, Bignon M, Gomez E, Ardidie-Robouant C, et al. Interaction of the coiled-coil domain with glycosaminoglycans protects angiopoietin-like 4 from proteolysis and regulates its antiangiogenic activity. FASEB J. 2009;23(3):940–9.

    Article  PubMed  CAS  Google Scholar 

  29. Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, et al. Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing. J Biol Chem. 2010;285(43):32999–3009.

    Article  PubMed  CAS  Google Scholar 

  30. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.

    Article  PubMed  CAS  Google Scholar 

  31. Spencer L, Mann C, Metcalfe M, Webb M, Pollard C, Spencer D, et al. The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur J Cancer. 2009;45(12):2077–86.

    Article  PubMed  CAS  Google Scholar 

  32. Hardman WE. (n-3) fatty acids and cancer therapy. J Nutr. 2004;134(12 Suppl):3427S–30.

    PubMed  CAS  Google Scholar 

  33. Szymczak M, Murray M, Petrovic N. Modulation of angiogenesis by omega-3 polyunsaturated fatty acids is mediated by cyclooxygenases. Blood. 2008;111(7):3514–21.

    Article  PubMed  CAS  Google Scholar 

  34. Massaro M, Scoditti E, Carluccio MA, Campana MC, De Caterina R. Omega-3 fatty acids, inflammation and angiogenesis: basic mechanisms behind the cardioprotective effects of fish and fish oils. Cell Mol Biol (Noisy-le-Grand). 2010;56(1):59–82.

    CAS  Google Scholar 

  35. Scoditti E, Massaro M, Carluccio MA, Distante A, Storelli C, De Caterina R. PPARgamma agonists inhibit angiogenesis by suppressing PKCalpha- and CREB-mediated COX-2 expression in the human endothelium. Cardiovasc Res. 2010;86(2):302–10.

    Article  PubMed  CAS  Google Scholar 

  36. Kim HJ, Vosseler CA, Weber PC, Erl W. Docosahexaenoic acid induces apoptosis in proliferating human endothelial cells. J Cell Physiol. 2005;204(3):881–8.

    Article  PubMed  CAS  Google Scholar 

  37. Murota SI, Onodera M, Morita I. Regulation of angiogenesis by controlling VEGF receptor. Ann N Y Acad Sci. 2000;902:208–12. discussion 12–3.

    Article  PubMed  CAS  Google Scholar 

  38. Matesanz N, Park G, McAllister H, Leahey W, Devine A, McVeigh GE, et al. Docosahexaenoic acid improves the nitroso-redox balance and reduces VEGF-mediated angiogenic signaling in microvascular endothelial cells. Invest Ophthalmol Vis Sci. 2010;51(12):6815–25.

    Article  PubMed  Google Scholar 

  39. Maraldi T, Prata C, Caliceti C, Vieceli Dalla Sega F, Zambonin L, Fiorentini D, et al. VEGF-induced ROS generation from NAD(P)H oxidases protects human leukemic cells from apoptosis. Int J Oncol. 2010;36(6):1581–9.

    PubMed  CAS  Google Scholar 

  40. Li Q, Zhang Q, Wang M, Zhao S, Ma J, Luo N, et al. Eicosapentaenoic acid modifies lipid composition in caveolae and induces translocation of endothelial nitric oxide synthase. Biochimie. 2007;89(1):169–77.

    Article  PubMed  Google Scholar 

  41. Hamed EA, Zakary MM, Abdelal RM, AbdelMoneim EM. Vasculopathy in type 2 diabetes mellitus: role of specific angiogenic modulators. J Physiol Biochem. 2011;67(3):339–49.

    Article  PubMed  CAS  Google Scholar 

  42. Ghosh-Choudhury T, Mandal CC, Woodruff K, St Clair P, Fernandes G, Choudhury GG, et al. Fish oil targets PTEN to regulate NFkappaB for downregulation of anti-apoptotic genes in breast tumor growth. Breast Cancer Res Treat. 2009;118(1):213–28.

    Article  PubMed  CAS  Google Scholar 

  43. Tsuji M, Murota SI, Morita I. Docosapentaenoic acid (22:5, n-3) suppressed tube-forming activity in endothelial cells induced by vascular endothelial growth factor. Prostaglandins Leukot Essent Fatty Acids. 2003;68(5):337–42.

    Article  PubMed  CAS  Google Scholar 

  44. Murray MJ, Lessey BA. Embryo implantation and tumor metastasis: common pathways of invasion and angiogenesis. Semin Reprod Endocrinol. 1999;17(3):275–90.

    Article  PubMed  CAS  Google Scholar 

  45. Torry RJ, Rongish BJ. Angiogenesis in the uterus: potential regulation and relation to tumor angiogenesis. Am J Reprod Immunol. 1992;27(3–4):171–9.

    Article  PubMed  CAS  Google Scholar 

  46. Kulkarni AV, Mehendale SS, Yadav HR, Joshi SR. Reduced placental docosahexaenoic acid levels associated with increased levels of sFlt-1 in preeclampsia. Prostaglandins Leukot Essent Fatty Acids. 2011;84(1–2):51–5.

    Article  PubMed  CAS  Google Scholar 

  47. Calviello G, Di Nicuolo F, Gragnoli S, Piccioni E, Serini S, Maggiano N, et al. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis. 2004;25(12):2303–10.

    Article  PubMed  CAS  Google Scholar 

  48. Lin Q, Ruuska SE, Shaw NS, Dong D, Noy N. Ligand selectivity of the peroxisome proliferator-activated receptor alpha. Biochemistry. 1999;38(1):185–90.

    Article  PubMed  CAS  Google Scholar 

  49. de Urquiza AM, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J, et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science. 2000;290(5499):2140–4.

    Article  PubMed  Google Scholar 

  50. Gottlicher M, Demoz A, Svensson D, Tollet P, Berge RK, Gustafsson JA. Structural and metabolic requirements for activators of the peroxisome proliferator-activated receptor. Biochem Pharmacol. 1993;46(12):2177–84.

    Article  PubMed  CAS  Google Scholar 

  51. Salem Jr N, Litman B, Kim HY, Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 2001;36(9):945–59.

    Article  PubMed  CAS  Google Scholar 

  52. Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE. Essential fatty acids in visual and brain development. Lipids. 2001;36(9):885–95.

    Article  PubMed  CAS  Google Scholar 

  53. Staiger H, Haas C, Machann J, Werner R, Weisser M, Schick F, et al. Muscle-derived angiopoietin-like protein 4 is induced by fatty acids via peroxisome proliferator-activated receptor (PPAR)-delta and is of metabolic relevance in humans. Diabetes. 2009;58(3):579–89.

    Article  PubMed  CAS  Google Scholar 

  54. Yamada T, Ozaki N, Kato Y, Miura Y, Oiso Y. Insulin downregulates angiopoietin-like protein 4 mRNA in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2006;347(4):1138–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Financial and Competing Interests Disclosure

The work was supported in part by the Thune Holst Foundation. The authors have no other relevant affiliation or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim K. Duttaroy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duttaroy, A.K., Basak, S. (2013). Docosahexaenoic Acid and Angiogenesis: A Review. In: De Meester, F., Watson, R., Zibadi, S. (eds) Omega-6/3 Fatty Acids. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-215-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-215-5_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-214-8

  • Online ISBN: 978-1-62703-215-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics