Skip to main content

Genetically Engineered Mesenchymal Stem Cells for Cell and Gene Therapy

  • Chapter
  • First Online:
Mesenchymal Stem Cell Therapy

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 2447 Accesses

Abstract

Stem cells have enormous potential for regenerative medicine to treat fatal diseases and injuries that cannot otherwise be healed. In particular, adult stem cell-based therapies have been studied for several decades. Mesenchymal stem cells/marrow stromal cells (MSCs) have shown safety and therapeutic efficacy in preclinical models of various diseases such as cardiovascular disease, cancer, bone defects, renal failure, and neurodegenerative disorders. In spite of the great potential, several factors including low survival rate, low efficiency of MSC homing to injured sites, and poor levels of engraftment and retention have been major technical challenges to be overcome before MSC-based therapy can be applied to clinical applications in a consistently therapeutic manner. Genetically modified MSCs can be one option to overcome some of these problems and to deliver therapeutic agents. MSCs are powerful delivery vehicles and potent protein synthesis factories, and therefore the use of gene-modified MSCs to provide growth factors and other signals to improve the repair of damaged or diseased tissues holds much promise. Here we review the basic biology of human MSCs and the current status of preclinical and clinical trials using genetically engineered MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Laake LW, Van Hoof D, Mummery CL (2005) Cardiomyocytes derived from stem cells. Ann Med 37(7):499–512

    Article  PubMed  CAS  Google Scholar 

  2. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–7

    Article  PubMed  CAS  Google Scholar 

  3. Strauss S (2010) Geron trial resumes, but standards for stem cell trials remain elusive. Nat Biotechnol 28(10):989–90

    Article  PubMed  CAS  Google Scholar 

  4. Frantz S (2012) Embryonic stem cell pioneer Geron exits field, cuts losses. Nat Biotechnol 30(1):12–3

    Article  PubMed  CAS  Google Scholar 

  5. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–76

    Article  PubMed  CAS  Google Scholar 

  6. Barrilleaux B, Knoepfler PS (2011) Inducing iPSCs to escape the dish. Cell Stem Cell 9(2):103–11

    Article  PubMed  CAS  Google Scholar 

  7. Zhao T et al (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–5

    PubMed  CAS  Google Scholar 

  8. Patterson M et al (2011) Defining the nature of human pluripotent stem cell progeny. Cell Res. doi:10.1038/cr.2011.133

  9. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117

    Article  PubMed  CAS  Google Scholar 

  10. Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354(17):1813–26

    Article  PubMed  CAS  Google Scholar 

  11. Meyerrose T et al (2010) Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev 62(12):1167–74

    Article  PubMed  CAS  Google Scholar 

  12. Friedenstein AJ et al (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17(4):331–40

    Article  PubMed  CAS  Google Scholar 

  13. Ankrum J, Karp JM (2010) Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med 16(5):203–9

    Article  PubMed  Google Scholar 

  14. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4(3):206–16

    Article  PubMed  CAS  Google Scholar 

  15. Capoccia BJ et al (2009) Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood 113(21):5340–51

    Article  PubMed  CAS  Google Scholar 

  16. Le Blanc K et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–86

    Article  PubMed  CAS  Google Scholar 

  17. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–22

    Article  PubMed  CAS  Google Scholar 

  18. Bauer G et al (2008) In vivo biosafety model to assess the risk of adverse events from retroviral and lentiviral vectors. Mol Ther 16(7):1308–15

    Article  PubMed  CAS  Google Scholar 

  19. Horwitz EM et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5(3):309–13

    Article  PubMed  CAS  Google Scholar 

  20. Waehler R, Russell SJ, Curiel DT (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8(8):573–87

    Article  PubMed  CAS  Google Scholar 

  21. Mosca JD et al (2000) Mesenchymal stem cells as vehicles for gene delivery. Clin Orthop Relat Res 2000(379 Suppl): S71–S90

    Google Scholar 

  22. Meyerrose T et al (2006) Establishment and transduction of primary human stromal/mesenchymal stem cell monolayers. In: Nolta JA (ed) Genetic engineering of mesenchymal stem cells, Chap 2. Kluwer Academic, Dordrecht, the Netherlands

    Google Scholar 

  23. Meyerrose TE et al (2008) Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. Stem Cells 26(7):1713–22

    Article  PubMed  CAS  Google Scholar 

  24. Stephenson J (2001) Studies illuminate cause of fatal reaction in gene-therapy trial. JAMA 285(20):2570

    Article  PubMed  CAS  Google Scholar 

  25. Manno CS et al (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12(3):342–7

    Article  PubMed  CAS  Google Scholar 

  26. Bushman F et al (2005) Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3(11):848–58

    Article  PubMed  CAS  Google Scholar 

  27. Cattoglio C et al (2007) Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 110(6):1770–8

    Article  PubMed  CAS  Google Scholar 

  28. Brouard N et al (2000) Transplantation of gene-modified human bone marrow stromal cells into mouse-human bone chimeras. J Hematother Stem Cell Res 9(2):175–81

    Article  PubMed  CAS  Google Scholar 

  29. Ding L et al (1999) Bone marrow stromal cells as a vehicle for gene transfer. Gene Ther 6(9):1611–6

    Article  PubMed  CAS  Google Scholar 

  30. Fierro FA et al (2011) Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells 29(11):1727–37

    Article  PubMed  CAS  Google Scholar 

  31. Dao MA, Pepper KA, Nolta JA (1997) Long-term cytokine production from engineered primary human stromal cells influences human hematopoiesis in an in vivo xenograft model. Stem Cells 15(6):443–54

    Article  PubMed  CAS  Google Scholar 

  32. Papapetrou EP, Zoumbos NC, Athanassiadou A (2005) Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects. Gene Ther 12(Suppl 1):S118–30

    Article  PubMed  CAS  Google Scholar 

  33. McMahon JM et al (2006) Gene transfer into rat mesenchymal stem cells: a comparative study of viral and nonviral vectors. Stem Cells Dev 15(1):87–96

    Article  PubMed  CAS  Google Scholar 

  34. Stender S et al (2007) Adeno-associated viral vector transduction of human mesenchymal stem cells. Eur Cell Mater 13:93–99 (discussion 99)

    Google Scholar 

  35. Chng K et al (2007) Specific adeno-associated virus serotypes facilitate efficient gene transfer into human and non-human primate mesenchymal stromal cells. J Gene Med 9(1):22–32

    Article  PubMed  CAS  Google Scholar 

  36. Wang Z et al (2004) Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther 11(8):711–21

    Article  PubMed  CAS  Google Scholar 

  37. Hacein-Bey-Abina S et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118(9):3132–42

    Article  PubMed  CAS  Google Scholar 

  38. Hacein-Bey-Abina S et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644):415–9

    Article  PubMed  CAS  Google Scholar 

  39. Boztug K et al (2010) Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 363(20):1918–27

    Article  PubMed  CAS  Google Scholar 

  40. Montini E et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24(6):687–96

    Article  PubMed  CAS  Google Scholar 

  41. Montini E et al (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119(4):964–75

    Article  PubMed  CAS  Google Scholar 

  42. Aiuti A et al (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360(5):447–58

    Article  PubMed  CAS  Google Scholar 

  43. Gruenloh W et al (2011) Characterization and in vivo testing of mesenchymal stem cells derived from human embryonic stem cells. Tissue Eng A 17(11–12):1517–25

    Article  CAS  Google Scholar 

  44. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64(2):278–94

    Article  PubMed  CAS  Google Scholar 

  45. Roobrouck VD, Ulloa-Montoya F, Verfaillie CM (2008) Self-renewal and differentiation capacity of young and aged stem cells. Exp Cell Res 314(9):1937–44

    Article  PubMed  CAS  Google Scholar 

  46. Jung Y, Bauer G, Nolta JA (2012) Induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 30(1):42–7

    Article  PubMed  CAS  Google Scholar 

  47. Meyerrose TE et al (2007) In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells 25(1):220–7

    Article  PubMed  CAS  Google Scholar 

  48. Mangi AA et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9(9):1195–201

    Article  PubMed  CAS  Google Scholar 

  49. Gnecchi M et al (2009) Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells 27(4):971–9

    Article  PubMed  CAS  Google Scholar 

  50. Yu YS et al (2010) AKT-modified autologous intracoronary mesenchymal stem cells prevent remodeling and repair in swine infarcted myocardium. Chin Med J (Engl) 123(13):1702–8

    CAS  Google Scholar 

  51. Wang D et al (2010) Connexin43 promotes survival of mesenchymal stem cells in ischaemic heart. Cell Biol Int 34(4):415–23

    Article  PubMed  CAS  Google Scholar 

  52. Wang X et al (2009) Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells 27(12):3021–31

    PubMed  CAS  Google Scholar 

  53. Li W et al (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25(8):2118–27

    Article  PubMed  CAS  Google Scholar 

  54. Hu B et al (2010) Enhanced treatment of articular cartilage defect of the knee by intra-articular injection of Bcl-xL-engineered mesenchymal stem cells in rabbit model. J Tissue Eng Regen Med 4(2):105–14

    Article  PubMed  CAS  Google Scholar 

  55. Zeng B et al (2008) Effects of combined mesenchymal stem cells and heme oxygenase-1 therapy on cardiac performance. Eur J Cardiothorac Surg 34(4):850–6

    Article  PubMed  Google Scholar 

  56. Tsubokawa T et al (2010) Impact of anti-apoptotic and anti-oxidative effects of bone marrow mesenchymal stem cells with transient overexpression of heme oxygenase-1 on myocardial ischemia. Am J Physiol Heart Circ Physiol 298(5):H1320–9

    Article  PubMed  CAS  Google Scholar 

  57. Shu T et al (2010) HO-1 modified mesenchymal stem cells modulate MMPs/TIMPs system and adverse remodeling in infarcted myocardium. Tissue Cell 42(4):217–22

    Article  PubMed  CAS  Google Scholar 

  58. Zeng B et al (2010) Over-expression of HO-1 on mesenchymal stem cells promotes angiogenesis and improves myocardial function in infarcted myocardium. J Biomed Sci 17:80

    Article  PubMed  CAS  Google Scholar 

  59. Liang OD et al (2011) Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary hypertension. Stem Cells 29(1):99–107

    Article  PubMed  CAS  Google Scholar 

  60. Jiang YB et al (2011) Effects of heme oxygenase-1 gene modulated mesenchymal stem cells on vasculogenesis in ischemic swine hearts. Chin Med J (Engl) 124(3):401–7

    CAS  Google Scholar 

  61. Rosova I et al (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26(8):2173–82

    Article  PubMed  CAS  Google Scholar 

  62. Liu X et al (2006) Heme oxygenase-1 (HO-1) inhibits postmyocardial infarct remodeling and restores ventricular function. FASEB J 20(2):207–16

    Article  PubMed  CAS  Google Scholar 

  63. Hu X et al (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135(4):799–808

    Article  PubMed  CAS  Google Scholar 

  64. Hung SC et al (2007) Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS ONE 2(5):e416

    Article  PubMed  CAS  Google Scholar 

  65. Rombouts WJ, Ploemacher RE (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17(1):160–70

    Article  PubMed  CAS  Google Scholar 

  66. Wynn RF et al (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104(9):2643–5

    Article  PubMed  CAS  Google Scholar 

  67. Sackstein R et al (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 14(2):181–7

    Article  PubMed  CAS  Google Scholar 

  68. Guan M et al (2012) Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 18(3):456–62

    Article  PubMed  CAS  Google Scholar 

  69. Cheng Z et al (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 16(3):571–9

    Article  PubMed  CAS  Google Scholar 

  70. Huang W et al (2011) Mesenchymal stem cells overexpressing CXCR4 attenuate remodeling of postmyocardial infarction by releasing matrix metalloproteinase-9. Stem Cells Dev 21(5):778–89

    Article  PubMed  CAS  Google Scholar 

  71. Huang J et al (2010) Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res 106(11):1753–62

    Article  PubMed  CAS  Google Scholar 

  72. Rosamond W et al (2007) Heart disease and stroke statistics–2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115(5):e69–171

    Article  PubMed  Google Scholar 

  73. Siu CW, Moore JC, Li RA (2007) Human embryonic stem cell-derived cardiomyocytes for heart therapies. Cardiovasc Hematol Disord Drug Targets 7(2):145–52

    Article  PubMed  CAS  Google Scholar 

  74. Bardy GH et al (2005) Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 352(3):225–37

    Article  PubMed  CAS  Google Scholar 

  75. Rose EA et al (2001) Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med 345(20):1435–43

    Article  PubMed  CAS  Google Scholar 

  76. Wang Y et al (2006) Combining pharmacological mobilization with intramyocardial delivery of bone marrow cells over-expressing VEGF is more effective for cardiac repair. J Mol Cell Cardiol 40(5):736–45

    Article  PubMed  CAS  Google Scholar 

  77. Gao F et al (2007) A promising strategy for the treatment of ischemic heart disease: mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Can J Cardiol 23(11):891–8

    Article  PubMed  Google Scholar 

  78. Matsumoto R et al (2005) Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol 25(6):1168–73

    Article  PubMed  CAS  Google Scholar 

  79. Duan HF et al (2003) Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther 8(3):467–74

    Article  PubMed  CAS  Google Scholar 

  80. Guo Y et al (2008) Locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis. Arch Med Res 39(2):179–88

    Article  PubMed  CAS  Google Scholar 

  81. Guo YH et al (2008) Hepatocyte growth factor and granulocyte colony-stimulating factor form a combined neovasculogenic therapy for ischemic cardiomyopathy. Cytotherapy 10(8):857–67

    Article  PubMed  CAS  Google Scholar 

  82. Deuse T et al (2009) Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation 120(11 Suppl):S247–54

    Article  PubMed  CAS  Google Scholar 

  83. Fierro F et al (2012) Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells 29(11):1727–37

    Article  CAS  Google Scholar 

  84. Jemal A et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  85. Shah K (2012) Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 64(8):739–48

    Article  PubMed  CAS  Google Scholar 

  86. Sasser AK et al (2007) Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB J 21(13):3763–70

    Article  PubMed  CAS  Google Scholar 

  87. Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–63

    Article  PubMed  CAS  Google Scholar 

  88. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–74

    Article  PubMed  CAS  Google Scholar 

  89. Rosenberg SA (2001) Progress in human tumour immunology and immunotherapy. Nature 411(6835):380–4

    Article  PubMed  CAS  Google Scholar 

  90. Young HA (2006) Unraveling the pros and cons of interferon-gamma gene regulation. Immunity 24(5):506–7

    Article  PubMed  CAS  Google Scholar 

  91. Chen X et al (2008) A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 16(4):749–56

    Article  PubMed  CAS  Google Scholar 

  92. Gao P et al (2010) Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett 290(2):157–66

    Article  PubMed  CAS  Google Scholar 

  93. Seo SH et al (2011) The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther 18(5):488–95

    Article  PubMed  CAS  Google Scholar 

  94. Ryu CH et al (2011) Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum Gene Ther 22(6):733–43

    Article  PubMed  CAS  Google Scholar 

  95. Xu G et al (2009) Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol Int 33(4):466–74

    Article  PubMed  CAS  Google Scholar 

  96. Nakamura K et al (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11(14):1155–64

    Article  PubMed  CAS  Google Scholar 

  97. Ren C et al (2008) Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 26(9):2332–8

    Article  PubMed  CAS  Google Scholar 

  98. Sartoris S et al (2011) Efficacy assessment of interferon-alpha-engineered mesenchymal stromal cells in a mouse plasmacytoma model. Stem Cells Dev 20(4):709–19

    Article  PubMed  CAS  Google Scholar 

  99. Studeny M et al (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62(13):3603–8

    PubMed  CAS  Google Scholar 

  100. Studeny M et al (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96(21):1593–603

    Article  PubMed  CAS  Google Scholar 

  101. Ling X et al (2010) Mesenchymal stem cells overexpressing IFN-beta inhibit breast cancer growth and metastases through Stat3 signaling in a syngeneic tumor model. Cancer Microenviron 3(1):83–95

    Article  PubMed  CAS  Google Scholar 

  102. Ren C et al (2008) Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther 15(21):1446–53

    Article  PubMed  CAS  Google Scholar 

  103. Kidd S et al (2010) Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy 12(5):615–25

    Article  PubMed  CAS  Google Scholar 

  104. Reed JC (2003) Apoptosis-targeted therapies for cancer. Cancer Cell 3(1):17–22

    Article  PubMed  CAS  Google Scholar 

  105. Wiley SR et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3(6):673–82

    Article  PubMed  CAS  Google Scholar 

  106. Walczak H et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5(2):157–63

    Article  PubMed  CAS  Google Scholar 

  107. Mohr A et al (2008) Mesenchymal stem cells expressing TRAIL lead to tumour growth inhibition in an experimental lung cancer model. J Cell Mol Med 12(6B):2628–2643

    Google Scholar 

  108. Kim SM et al (2008) Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res 68(23):9614–23

    Article  PubMed  CAS  Google Scholar 

  109. Sasportas LS et al (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA 106(12):4822–7

    Article  PubMed  CAS  Google Scholar 

  110. Loebinger MR et al (2009) Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 69(10):4134–42

    Article  PubMed  CAS  Google Scholar 

  111. Yang B et al (2009) Dual-targeted antitumor effects against brainstem glioma by intravenous delivery of tumor necrosis factor-related, apoptosis-inducing, ligand-engineered human mesenchymal stem cells. Neurosurgery 65(3):610–624 (discussion 624)

    Google Scholar 

  112. Menon LG et al (2009) Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 27(9):2320–30

    Article  PubMed  CAS  Google Scholar 

  113. Grisendi G et al (2010) Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 70(9):3718–29

    Article  PubMed  CAS  Google Scholar 

  114. Luetzkendorf J et al (2010) Growth inhibition of colorectal carcinoma by lentiviral TRAIL-transgenic human mesenchymal stem cells requires their substantial intratumoral presence. J Cell Mol Med 14(9):2292–304

    Article  PubMed  CAS  Google Scholar 

  115. Mohr A et al (2010) Targeting of XIAP combined with systemic mesenchymal stem cell-mediated delivery of sTRAIL ligand inhibits metastatic growth of pancreatic carcinoma cells. Stem Cells 28(11):2109–20

    Article  PubMed  CAS  Google Scholar 

  116. Kim SM et al (2010) Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy. Stem Cells 28(12):2217–28

    Article  PubMed  Google Scholar 

  117. Choi SA et al (2011) Therapeutic efficacy and safety of TRAIL-producing human adipose tissue-derived mesenchymal stem cells against experimental brainstem glioma. Neuro Oncol 13(1):61–9

    Article  PubMed  CAS  Google Scholar 

  118. Mueller LP et al (2011) TRAIL-transduced multipotent mesenchymal stromal cells (TRAIL-MSC) overcome TRAIL resistance in selected CRC cell lines in vitro and in vivo. Cancer Gene Ther 18(4):229–39

    Article  PubMed  CAS  Google Scholar 

  119. Szegezdi E et al (2009) Stem cells are resistant to TRAIL receptor-mediated apoptosis. J Cell Mol Med 13(11–12):4409–14

    Article  PubMed  CAS  Google Scholar 

  120. Secchiero P et al (2008) Tumor necrosis factor-related apoptosis-inducing ligand promotes migration of human bone marrow multipotent stromal cells. Stem Cells 26(11):2955–63

    Article  PubMed  CAS  Google Scholar 

  121. Cihova M, Altanerova V, Altaner C (2011) Stem cell based cancer gene therapy. Mol Pharm 8(5):1480–7

    Article  PubMed  CAS  Google Scholar 

  122. Kucerova L et al (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67(13):6304–13

    Article  PubMed  CAS  Google Scholar 

  123. Kucerova L et al (2008) Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med 10(10):1071–82

    Article  PubMed  CAS  Google Scholar 

  124. You MH et al (2009) Cytosine deaminase-producing human mesenchymal stem cells mediate an antitumor effect in a mouse xenograft model. J Gastroenterol Hepatol 24(8):1393–400

    Article  PubMed  CAS  Google Scholar 

  125. Cavarretta IT et al (2010) Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther 18(1):223–31

    Article  PubMed  CAS  Google Scholar 

  126. Chang DY et al (2010) The growth of brain tumors can be suppressed by multiple transplantation of mesenchymal stem cells expressing cytosine deaminase. Int J Cancer 127(8):1975–83

    Article  PubMed  CAS  Google Scholar 

  127. Altanerova V et al (2011) Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosinedeaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma. Int J Cancer 130(10):2455–63

    Article  PubMed  CAS  Google Scholar 

  128. Matuskova M et al (2010) HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett 290(1):58–67

    Article  PubMed  CAS  Google Scholar 

  129. Song C et al (2011) Thymidine kinase gene modified bone marrow mesenchymal stem cells as vehicles for antitumor therapy. Hum Gene Ther 22(4):439–49

    Article  PubMed  CAS  Google Scholar 

  130. Bak XY, Yang J, Wang S (2010) Baculovirus-transduced bone marrow mesenchymal stem cells for systemic cancer therapy. Cancer Gene Ther 17(10):721–9

    Article  PubMed  CAS  Google Scholar 

  131. Huang Q et al (2010) The anti-glioma effect of suicide gene therapy using BMSC expressing HSV/TK combined with overexpression of Cx43 in glioma cells. Cancer Gene Ther 17(3):192–202

    Article  PubMed  CAS  Google Scholar 

  132. Eager RM, Nemunaitis J (2011) Clinical development directions in oncolytic viral therapy. Cancer Gene Ther 18(5):305–17

    Article  PubMed  CAS  Google Scholar 

  133. Komarova S et al (2006) Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 5(3):755–66

    Article  PubMed  CAS  Google Scholar 

  134. Stoff-Khalili MA et al (2007) Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 105(2):157–67

    Article  PubMed  Google Scholar 

  135. Sonabend AM et al (2008) Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 26(3):831–41

    Article  PubMed  CAS  Google Scholar 

  136. Yong RL et al (2009) Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res 69(23):8932–40

    Article  PubMed  CAS  Google Scholar 

  137. Ahmed AU et al (2011) A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma. Mol Pharm 8(5):1559–72

    Article  PubMed  CAS  Google Scholar 

  138. Garcia-Castro J et al (2010) Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther 17(7):476–83

    Article  PubMed  CAS  Google Scholar 

  139. Mader EK et al (2009) Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res 15(23):7246–55

    Article  PubMed  CAS  Google Scholar 

  140. Gronthos S et al (2003) Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J Bone Miner Res 18(4):716–22

    Article  PubMed  CAS  Google Scholar 

  141. Chang J et al (2007) Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 282(42):30938–48

    Article  PubMed  CAS  Google Scholar 

  142. Li H et al (2007) Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2. Biochem Biophys Res Commun 356(4):836–42

    Article  PubMed  CAS  Google Scholar 

  143. Kumar S, Nagy TR, Ponnazhagan S (2010) Therapeutic potential of genetically modified adult stem cells for osteopenia. Gene Ther 17(1):105–16

    Article  PubMed  CAS  Google Scholar 

  144. Chen YL et al (2008) Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP-2 gene: an alternative to alveolaplasty. Gene Ther 15(22):1469–77

    Article  PubMed  CAS  Google Scholar 

  145. Lee SJ et al (2010) Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials 31(21):5652–9

    Article  PubMed  CAS  Google Scholar 

  146. Granero-Molto F et al (2011) Mesenchymal stem cells expressing insulin-like growth factor-I (MSC(IGF)) promote fracture healing and restore new bone formation in Irs1 knock-out mice: analyses of MSC(IGF) autocrine and paracrine regenerative effects. Stem Cells 29(10):1537–48

    Article  PubMed  CAS  Google Scholar 

  147. Shi S et al (2002) Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol 20(6):587–91

    Article  PubMed  CAS  Google Scholar 

  148. Eliopoulos N et al (2006) Erythropoietin delivery by genetically engineered bone marrow stromal cells for correction of anemia in mice with chronic renal failure. J Am Soc Nephrol 17(6):1576–84

    Article  PubMed  CAS  Google Scholar 

  149. Kucic T et al (2008) Mesenchymal stromal cells genetically engineered to overexpress IGF-I enhance cell-based gene therapy of renal failure-induced anemia. Am J Physiol Renal Physiol 295(2):F488–96

    Article  PubMed  CAS  Google Scholar 

  150. Hagiwara M et al (2008) Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. Hum Gene Ther 19(8):807–19

    Article  PubMed  CAS  Google Scholar 

  151. Yuan L et al (2011) VEGF-modified human embryonic mesenchymal stem cell implantation enhances protection against cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol 300(1):F207–18

    Article  PubMed  CAS  Google Scholar 

  152. Joyce N et al (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5(6):933–46

    Article  PubMed  Google Scholar 

  153. Dey ND et al (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 214(2):193–200

    Article  PubMed  CAS  Google Scholar 

  154. Suzuki M et al (2008) Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther 16(12):2002–10

    Article  PubMed  CAS  Google Scholar 

  155. Glavaski-Joksimovic A et al (2010) Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson’s disease. J Neurosci Res 88(12):2669–81

    PubMed  CAS  Google Scholar 

  156. Somoza R et al (2010) Intranigral transplantation of epigenetically induced BDNF-secreting human mesenchymal stem cells: implications for cell-based therapies in Parkinson’s disease. Biol Blood Marrow Transplant 16(11):1530–40

    Article  PubMed  CAS  Google Scholar 

  157. van Velthoven CT et al (2009) Regeneration of the ischemic brain by engineered stem cells: fuelling endogenous repair processes. Brain Res Rev 61(1):1–13

    Article  PubMed  CAS  Google Scholar 

  158. Zuccato C et al (2001) Loss of Huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293(5529):493–8

    Article  PubMed  CAS  Google Scholar 

  159. Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10(3):209–19

    Article  PubMed  CAS  Google Scholar 

  160. Canals JM et al (2004) Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 24(35):7727–39

    Article  PubMed  CAS  Google Scholar 

  161. Zuccato C, Cattaneo E (2007) Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 81(5–6):294–330

    Article  PubMed  CAS  Google Scholar 

  162. Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5(6):311–22

    Article  PubMed  CAS  Google Scholar 

  163. Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90(3):905–81

    Article  PubMed  CAS  Google Scholar 

  164. Acsadi G et al (2002) Increased survival and function of SOD1 mice after glial cell-derived neurotrophic factor gene therapy. Hum Gene Ther 13(9):1047–59

    Article  PubMed  CAS  Google Scholar 

  165. Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26(6):1049–55

    Article  PubMed  Google Scholar 

  166. Morley JF, Hurtig HI (2010) Current understanding and management of Parkinson disease: five new things. Neurology 75(18 Suppl 1):S9–15

    Article  PubMed  Google Scholar 

  167. Halme DG, Kessler DA (2006) FDA regulation of stem-cell-based therapies. N Engl J Med 355(16):1730–5

    Article  PubMed  CAS  Google Scholar 

  168. Martin MJ et al (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11(2):228–32

    Article  PubMed  CAS  Google Scholar 

  169. Rubio D et al (2005) Spontaneous human adult stem cell transformation. Cancer Res 65(8):3035–9

    PubMed  CAS  Google Scholar 

  170. Rosland GV et al (2009) Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 69(13):5331–9

    Article  PubMed  CAS  Google Scholar 

  171. Armesilla-Diaz A, Elvira G, Silva A (2009) p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells. Exp Cell Res 315(20):3598–610

    Article  PubMed  CAS  Google Scholar 

  172. de la Fuente R et al (2010) Retraction: spontaneous human adult stem cell transformation. Cancer Res 70(16):6682

    Article  PubMed  Google Scholar 

  173. Trounson A et al (2011) Clinical trials for stem cell therapies. BMC Med 9:52

    Article  PubMed  Google Scholar 

  174. Smith RH (2008) Adeno-associated virus integration: virus versus vector. Gene Ther 15(11):817–22

    Article  PubMed  CAS  Google Scholar 

  175. Lai CM, Lai YK, Rakoczy PE (2002) Adenovirus and adeno-associated virus vectors. DNA Cell Biol 21(12):895–913

    Article  PubMed  CAS  Google Scholar 

  176. Urnov FD et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–51

    Article  PubMed  CAS  Google Scholar 

  177. Lombardo A et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25(11):1298–306

    Article  PubMed  CAS  Google Scholar 

  178. Moehle EA et al (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 104(9):3055–60

    Article  PubMed  CAS  Google Scholar 

  179. Szczepek M et al (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786–93

    Article  PubMed  CAS  Google Scholar 

  180. Segal DJ (2011) Zinc-finger nucleases transition to the CoDA. Nat Methods 8(1):53–5

    Article  PubMed  CAS  Google Scholar 

  181. Benabdallah BF et al (2010) Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform. Cytotherapy 12(3):394–9

    Article  PubMed  CAS  Google Scholar 

  182. Schuldiner M, Itskovitz-Eldor J, Benvenisty N (2003) Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells 21(3):257–65

    Article  PubMed  CAS  Google Scholar 

  183. Naujok O et al (2010) Selective removal of undifferentiated embryonic stem cells from differentiation cultures through HSV1 thymidine kinase and ganciclovir treatment. Stem Cell Rev 6(3):450–61

    Article  PubMed  CAS  Google Scholar 

  184. Choi YH, Kurtz A, Stamm C (2011) Mesenchymal stem cells for cardiac cell therapy. Hum Gene Ther 22(1):3–17

    Article  PubMed  CAS  Google Scholar 

  185. Miettinen JA et al (2012) Left ventricular functional recovery after intracoronary injection of autologous bone marrow-derived stem cells in patients with acute myocardial infarction: a dose-response pilot study. Int J Cardiol 154(3):354–6

    Article  PubMed  Google Scholar 

  186. Hare JM et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54(24):2277–86

    Article  PubMed  CAS  Google Scholar 

  187. Kebriaei P et al (2009) Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant 15(7):804–11

    Article  PubMed  CAS  Google Scholar 

  188. Connick P et al (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 11(2):150–6

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We thank the California Institute for Regenerative Medicine (CIRM), National Institute of Health (NIH), and philanthropic donors for supporting our research. We apologize to our colleagues whose work could not be cited due to the space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan A. Nolta Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jung, Y., Nolta, J.A. (2013). Genetically Engineered Mesenchymal Stem Cells for Cell and Gene Therapy. In: Chase, L., Vemuri, M. (eds) Mesenchymal Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-200-1_15

Download citation

Publish with us

Policies and ethics