Skip to main content

Oral and Intestinal Bacteroidetes

  • Chapter
  • First Online:
Molecular Typing in Bacterial Infections

Part of the book series: Infectious Disease ((ID))

  • 2216 Accesses

Abstract

Bacteroidetes are a phylum of bacteria including the class Bacteroides which consists of the genera Bacteroides, Porphyromonas, and Prevotella. Whereas the genus Bacteroides is discussed and subjected with infections originating from the intestinal tract, Porphyromonas is clearly more associated with oral or vaginal infections. With both genera (and related such as Bilophila or Prevotella) different methods are described and discussed exemplarily. Critical to this development, however, is a proper understanding and application of the methodologies and knowledge of their limitations. In this chapter, molecular tools based on ITS (Internal Transcribed Spacer) amplification and sequencing as well as PCR fingerprint techniques are described along with examples showing ways to analyze the datasets. Both methods allow the identification of almost any given bacterial species or strain in pure culture or even directly in clinical samples in a sensitive and reproducible way. This chapter is complemented by discussing potential pitfalls that should be taken into consideration for producing proper results along with referring the reader to pertinent literature that will allow an individual deepening into the concept of molecular-typing in clinical bacteriology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shah HN, Collins MD (1989) Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 39:85–87

    Article  Google Scholar 

  2. Shah HN, Collins MD (1988) Proposal for reclassification of Bacteroides asaccharolyticus, Bacteroides gingivalis, and Bacteroides endodontalis in a new genus, Porphyromonas. Int J Syst Bacteriol 38:128–131

    Article  CAS  Google Scholar 

  3. Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593–621

    Article  PubMed  CAS  Google Scholar 

  4. Kling JJ, Wright RL, Moncrief JS et al (1997) Cloning and characterization of the gene for the metalloprotease enterotoxin of Bacteroides fragilis. FEMS Microbiol Lett 146:279–284

    Article  PubMed  CAS  Google Scholar 

  5. Myers LL, Shoop DS, Stackhouse LL, Newman FS, Flaherty RJ, Letson GW, Sack RB (1987) Isolation of enterotoxigenic Bacteroides fragilis from humans with diarrhea. J Clin Microbiol 25:2330–2333

    PubMed  CAS  Google Scholar 

  6. Sack RB, Albert MJ, Alam K et al (1994) Isolation of enterotoxigenic Bacteroides fragilis from Bangladeshi children with diarrhea: a controlled study. J Clin Microbiol 32:960–963

    PubMed  CAS  Google Scholar 

  7. San Joaquin VH, Griffis JC, Lee C et al (1995) Association of Bacteroides fragilis with childhood diarrhea. Scand J Infect Dis 27:211–215

    Article  PubMed  CAS  Google Scholar 

  8. Kato N, Kato H, Watanabe K et al (1996) Association of enterotoxigenic Bacteroides fragilis with bacteremia. Clin Infect Dis 23(Suppl 1):S83–S86

    Article  PubMed  Google Scholar 

  9. Claros MC, Claros ZC, Tang YJ et al (2000) Occurrence of Bacteroides fragilis enterotoxin gene-carrying strains in Germany and the United States. J Clin Microbiol 38:1996–1997

    PubMed  CAS  Google Scholar 

  10. Baron EJ, Summanen P, Downes J et al (1989) Bilophila wadsworthia, gen. nov. and sp. nov., a unique Gram-negative anaerobic rod recovered from appendicitis specimens and human faeces. J Gen Microbiol 135:3405–3411

    PubMed  CAS  Google Scholar 

  11. Baron EJ (1997) Bilophila wadsworthia: a unique Gram-negative anaerobic rod. Anaerobe 3:83–86

    Article  PubMed  CAS  Google Scholar 

  12. da Silva SM, Venceslau SS, Fernandes CL et al (2008) Hydrogen as an energy source for the human pathogen Bilophila wadsworthia. Antonie Van Leeuwenhoek 93:381–390

    Article  PubMed  CAS  Google Scholar 

  13. Jousimies-Somer HR et al (eds) (2002) Wadsworth-KTL Anaerobic Bacteriology Manual, 6th edn. Star, Belmont, CA

    Google Scholar 

  14. Citron DM, Baron EJ, Finegold SM et al (1990) Short prereduced anaerobically sterilized (PRAS) biochemical scheme for identification of clinical isolates of bile-resistant Bacteroides species. J Clin Microbiol 28:2220–2223

    PubMed  CAS  Google Scholar 

  15. Conrads G, Citron DM, Tyrrell KL et al (2005) 16S-23S rRNA gene internal transcribed spacer sequences for analysis of the phylogenetic relationships among species of the genus Porphyromonas. Int J Syst Evol Microbiol 55:607–613

    Article  PubMed  CAS  Google Scholar 

  16. Jousimies-Somer H, Summanen P (2002) Recent taxonomic changes and terminology update of clinically significant anaerobic Gram-negative bacteria (excluding spirochetes). Clin Infect Dis 35:S17–S21

    Article  PubMed  Google Scholar 

  17. Smith CJ, Callihan DR (1992) Analysis of rRNA restriction fragment length polymorphisms from Bacteroides spp. and Bacteroides fragilis isolates associated with diarrhea in humans and animals. J Clin Microbiol 30:806–812

    PubMed  CAS  Google Scholar 

  18. Rautio M, Eerola E, Vaisanen-Tunkelrott ML et al (2003) Reclassification of Bacteroides putredinis (Weinberg et al., 1937) in a new genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. Syst Appl Microbiol 26:182–188

    Article  PubMed  Google Scholar 

  19. Huey B, Hall J (1989) Hypervariable DNA fingerprinting in Escherichia coli: minisatellite probe from bacteriophage M13. J Bacteriol 171:2528–2532

    PubMed  CAS  Google Scholar 

  20. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  PubMed  CAS  Google Scholar 

  21. Williams JG, Kubelik AR, Livak KJ et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  22. Barry T, Colleran G, Glennon M et al (1991) The 16S/23S ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl 1:51–56

    Article  PubMed  CAS  Google Scholar 

  23. Welsh J, McClelland M (1991) Genomic fingerprints produced by PCR with consensus tRNA gene primers. Nucleic Acids Res 19:861–866

    Article  PubMed  CAS  Google Scholar 

  24. Cobb BD, Clarkson JM (1994) A simple procedure for optimising the polymerase chain reaction (PCR) using modified Taguchi methods. Nucleic Acids Res 22:3801–3805

    Article  PubMed  CAS  Google Scholar 

  25. Shetab R, Cohen SH, Prindiville T et al (1998) Detection of Bacteroides fragilis enterotoxin gene by PCR. J Clin Microbiol 36:1729–1732

    PubMed  CAS  Google Scholar 

  26. Franco AA, Cheng RK, Chung GT et al (1999) Molecular evolution of the pathogenicity island of enterotoxigenic Bacteroides fragilis strains. J Bacteriol 181:6623–6633

    PubMed  CAS  Google Scholar 

  27. Johnson J, Ault D (1978) Taxonomy of the Bacteroides. II. Correlation of phenotypic characteristics with deoxyribonucleic acid homology groupings for Bacteroides fragilis and other saccharolytic Bacteroides species. Int J Syst Bacteriol 28:257–268

    Article  Google Scholar 

  28. Podglajen I, Breuil J, Casin I et al (1995) Genotypic identification of two groups within the species Bacteroides fragilis by ribotyping and by analysis of PCR-generated fragment patterns and insertion sequence content. J Bacteriol 177:5270–5275

    PubMed  CAS  Google Scholar 

  29. Appelbaum PC, Jacobs MR, Spangler SK et al (1986) Comparative activity of beta-lactamase inhibitors YTR 830, clavulanate, and sulbactam combined with beta-lactams against beta-lactamase-producing anaerobes. Antimicrob Agents Chemother 30:789–791

    Article  PubMed  CAS  Google Scholar 

  30. Finegold SM, Vaisanen ML, Rautio M et al (2004) Porphyromonas uenonis sp. nov., a pathogen for humans distinct from P. asaccharolytica and P. endodontalis. J Clin Microbiol 42:5298–5301

    Article  PubMed  Google Scholar 

  31. Summanen PH, Durmaz B, Vaisanen ML et al (2005) Porphyromonas somerae sp. nov., a pathogen isolated from humans and distinct from Porphyromonas levii. J Clin Microbiol 43:4455–4459

    Article  PubMed  CAS  Google Scholar 

  32. Fournier D, Mouton C, Lapierre P et al (2001) Porphyromonas gulae sp. nov., an anaerobic, Gram-negative coccobacillus from the gingival sulcus of various animal hosts. Int J Syst Evol Microbiol 51:1179–1189

    Article  PubMed  CAS  Google Scholar 

  33. Willems A, Collins MD (1995) Reclassification of Oribaculum catoniae (Moore and Moore 1994) as Porphyromonas catoniae comb. nov. and emendation of the genus Porphyromonas. Int J Syst Bacteriol 45:578–581

    Article  PubMed  CAS  Google Scholar 

  34. Finegold SM, Jousimies-Somer H (1997) Recently described clinically important anaerobic bacteria: medical aspects. Clin Infect Dis 25(Suppl 2):S88–S93

    Article  PubMed  Google Scholar 

  35. Jousimies-Somer H (1997) Recently described clinically important anaerobic bacteria: taxonomic aspects and update. Clin Infect Dis 25(Suppl 2):S78–S87

    Article  PubMed  Google Scholar 

  36. Jousimies-Somer HR (1995) Update on the taxonomy and the clinical and laboratory characteristics of pigmented anaerobic Gram-negative rods. Clin Infect Dis 20(Suppl 2):S187–S191

    Article  PubMed  Google Scholar 

  37. Jousimies-Somer HR, Summanen P, Finegold SM (1995) Bacteroides levii-like organisms isolated from clinical specimens. Clin Infect Dis 20(Suppl 2):S208–S209

    Article  PubMed  Google Scholar 

  38. Vaisanen ML, Kiviranta M, Summanen P et al (1997) Porphyromonas endodontalis-like organisms from extraoral sources. Clin Infect Dis 25(Suppl 2):S191–S193

    Article  PubMed  Google Scholar 

  39. Sakamoto M, Suzuki M, Umeda M et al (2002) Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52:841–849

    Article  PubMed  CAS  Google Scholar 

  40. Conrads G, Claros MC, Citron DM et al (2002) 16S-23S rDNA internal transcribed spacer sequences for analysis of the phylogenetic relationships among species of the genus Fusobacterium. Int J Syst Evol Microbiol 52:493–499

    PubMed  CAS  Google Scholar 

  41. Guasp C, Moore ER, Lalucat J et al (2000) Utility of internally transcribed 16S-23S rDNA spacer regions for the definition of Pseudomonas stutzeri genomovars and other Pseudomonas species. Int J Syst Evol Microbiol 50(Pt 4):1629–1639

    Article  PubMed  CAS  Google Scholar 

  42. Motoyama Y, Ogata T (2000) 16S-23S rDNA spacer of Pectinatus, Selenomonas and Zymophilus reveal new phylogenetic relationships between these genera. Int J Syst Evol Microbiol 50(Pt 2):883–886

    Article  PubMed  CAS  Google Scholar 

  43. Soller R, Hirsch P, Blohm D et al (2000) Differentiation of newly described antarctic bacterial isolates related to Roseobacter species based on 16S-23S rDNA internal transcribed spacer sequences. Int J Syst Evol Microbiol 50(Pt 2):909–915

    Article  PubMed  CAS  Google Scholar 

  44. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555

    Article  PubMed  CAS  Google Scholar 

  45. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    PubMed  CAS  Google Scholar 

  46. von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  47. Kaltenboeck B, Wang C (2005) Advances in real-time PCR: application to clinical laboratory diagnostics. Adv Clin Chem 40:219–259

    Article  PubMed  CAS  Google Scholar 

  48. Cadieux N, Lebel P, Brousseau R (1993) Use of a triplex polymerase chain reaction for the detection and differentiation of Mycoplasma pneumoniae and Mycoplasma genitalium in the presence of human DNA. J Gen Microbiol 139:2431–2437

    Article  PubMed  CAS  Google Scholar 

  49. Chen K, Neimark H, Rumore P et al (1989) Broad range DNA probes for detecting and amplifying eubacterial nucleic acids. FEMS Microbiol Lett 48:19–24

    Article  PubMed  CAS  Google Scholar 

  50. Horz HP, Scheer S, Huenger F et al (2008) Selective isolation of bacterial DNA from human clinical specimens. J Microbiol Methods 72:98–102

    Article  PubMed  CAS  Google Scholar 

  51. Nicholas KB, Nicholas HBJ (1997) GeneDoc: a tool for editing and annotation multiple sequence alignments. Distributed by the authors www.psc.edu/biomed/genedoc (accessed date August 2004)

  52. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  53. Jeanmougin F, Thompson JD, Gouy M et al (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  PubMed  CAS  Google Scholar 

  54. Graham TA, Golsteyn-Thomas EJ, Thomas JE et al (1997) Inter- and intraspecies comparison of the 16S-23S rRNA operon intergenic spacer regions of six Listeria spp. Int J Syst Bacteriol 47:863–869

    Article  PubMed  CAS  Google Scholar 

  55. Gurtler V, Rao Y, Pearson SR et al (1999) DNA sequence heterogeneity in the three copies of the long 16S-23S rDNA spacer of Enterococcus faecalis isolates. Microbiology 145:1785–1796

    Article  PubMed  CAS  Google Scholar 

Suggested Reading

  • Brook I (1989) Anaerobic bacterial bacteremia: 12-year experience in two military hospitals. J Infect Dis 160:1071–1075

    Article  PubMed  CAS  Google Scholar 

  • Fraser AG, Brown R (1981) Neuraminidase production by Bacteroidaceae. J Med Microbiol 14:63–76

    Article  PubMed  CAS  Google Scholar 

  • Goldstein EJ, Citron DM (1988) Annual incidence, epidemiology, and comparative in vitro susceptibilities to cefoxitin, cefotetan, cefmetazole, and ceftizoxime of recent community-acquired isolates of the Bacteroides fragilis group. J Clin Microbiol 26:2361–2366

    PubMed  CAS  Google Scholar 

  • Goldstein EJ, Citron DM, Vreni Merriam C et al (1999) Activities of gemifloxacin (SB 265805, LB20304) compared to those of other oral antimicrobial agents against unusual anaerobes. Antimicrob Agents Chemother 43:2726–2730

    PubMed  CAS  Google Scholar 

  • Kasper DL (1986) Bacterial capsule–old dogmas and new tricks. J Infect Dis 153:407–415

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Conrads .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Claros, M.C., Conrads, G. (2013). Oral and Intestinal Bacteroidetes . In: de Filippis, I., McKee, M. (eds) Molecular Typing in Bacterial Infections. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-185-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-185-1_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-184-4

  • Online ISBN: 978-1-62703-185-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics