Skip to main content

Setting Rules for Post-ablation and Follow-Up

  • Chapter
  • First Online:
Imaging and Focal Therapy of Early Prostate Cancer

Part of the book series: Current Clinical Urology ((CCU))

  • 1370 Accesses

Abstract

Focal therapy has emerged as a less aggressive treatment alternative for a highly select group of men with early stage prostate cancer. Despite advances in ablative technology and imaging, focal therapy is still considered to be experimental or investigative by most centers. In addition, focal therapy has been broadly defined including a wide range of treatment modalities and templates. As a result of these issues, no standardized criteria or consensus protocols have been adopted for post-ablation oncological and functional follow-up and surveillance. In an effort to move closer to the adoption of a more unified approach, we review the relevant literature and suggest guidelines for post-ablation biopsies, use of PSA data, imaging, patient functional evaluation, and reporting of side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ward JF, Jones JS. Classification system: organ preserving treatment for prostate cancer. Urology. 2010;75:1258–60.

    Article  PubMed  Google Scholar 

  2. Finley DS, Pouliot F, Miller DC, Belldgrun AS. Primary and salvage cryotherapy for prostate cancer. Urol Clin North Am. 2010;37:67–82.

    Article  PubMed  Google Scholar 

  3. Eggener SE, Scardino PT, Carrol PR, et al. Focal therapy for localized prostate cancer: a critical appraisal of rationale and modalities. J Urol. 2007;178:2260–7.

    Article  PubMed  Google Scholar 

  4. Babaian RJ, Donnelly B, Bahn D, et al. Best practice statement on cryosurgery for the treatment of localized prostate cancer. J Urol. 2008;180:1993–2004.

    Article  PubMed  Google Scholar 

  5. Eggener S, Salomon G, Scardino PT, et al. Focal therapy for prostate cancer: possibilities and limitations. Eur Urol. 2010;58:57–64.

    Article  PubMed  Google Scholar 

  6. Ahmed HU, Emberton M. Benchmarks for success in focal therapy of prostate cancer: cure or control? World J Urol. 2010;28:577–82.

    Article  PubMed  Google Scholar 

  7. Noguchi M, Stamey TA, McNeal JE, Nolley R. Prognostic factors for multifocal prostate cancer in radical prostatectomy specimens: lack of significance of secondary cancers. J Urol. 2003;170:459–63.

    Article  PubMed  Google Scholar 

  8. Arora R, Koch MO, Eble JN, Ulbright TM, Li L, Cheng L. Heterogeneity of Gleason grade in multifocal adenocarcinoma of the prostate. Cancer. 2004;100:2362–6.

    Article  PubMed  Google Scholar 

  9. Esserman L, Shieh Y, Thompson I. Rethinking screening for breast cancer and prostate cancer. JAMA. 2009;302:1685–92.

    Article  PubMed  CAS  Google Scholar 

  10. Bott SR, Ahmed HU, Hindley RG, et al. The index lesion and focal therapy: an analysis the pathological characteristics of prostate cancer. BJU Int. 2010;106:1607–11.

    Article  PubMed  Google Scholar 

  11. Karavitakis M, Winkler M, Abel P, Livni N, Beckley I, Ahmed HU. Histological characteristics of the index lesion in whole-mount radical prostatectomy specimens: implications for focal therapy. Pros Can Pros Dis. 2011;14:46–52.

    Article  CAS  Google Scholar 

  12. Gburek BM, Kollmorgen TA, Qian J, D’Souza-Gburek SM, Lieber MM, Jenkins RB. Chromosomal anomalies in stage D1 prostate adenocarcinoma primary tumors and lymph node metastases detected by fluorescence in situ hybridization. J Urol. 1997;157:223–7.

    Article  PubMed  CAS  Google Scholar 

  13. Schmidt H, DeAngelis G, Eltze E, Gockel I, Semjonow A, Brandt B. Asynchronous growth of prostate cancer is reflected by circulating tumor cells delivered from distinct, even small foci, harboring loss of heterozygosity of the PTEN gene. Cancer Res. 2006;66:8959–65.

    Article  PubMed  CAS  Google Scholar 

  14. Ruijter ET, van de Kaa CA, Schalken JA, Debruyne FM, Ruiter DJ. Histological grade heterogeneity in multifocal prostate cancer. Biological and clinical implications. J Pathol. 1996;180:295–9.

    Article  PubMed  CAS  Google Scholar 

  15. Jones SJ. Managing patients following a negative prostate biopsy. Renal Urol News. Feb 2011;23–7.

    Google Scholar 

  16. Patel AR, Jones JS, Rabets J, et al. Parasagittal biopsies add minimal information in repeat saturation prostate biopsy. Urology. 2004;63:87–99.

    Article  PubMed  Google Scholar 

  17. Abdollah F, Scattoni V, Raber M, et al. The role of transrectal saturation biopsy in tumour localization: pathological correlation after retropubic radical prostatectomy and implication for focal ablative therapy. BJU Int. 2011;108(3):366–71.

    Article  PubMed  Google Scholar 

  18. Cool DW, Connolly MJ, Sherebrin S, et al. Repeat prostate biopsy accuracy: simulator-based comparison of two and three-dimensional transrectal US modalities. Radiology. 2010;254:587–94.

    Article  PubMed  Google Scholar 

  19. Marks L, Ward A, Gardi L, et al. Tracking of prostate biopsy sites using a 3D ultrasound device (Artemis). San Francisco: American Urology Association Annual Meeting; 2010.

    Google Scholar 

  20. Guo Y, Weahera PN, Narayanan R, et al. Image registration of a 3-dimensional transrectal ultrasound prostate biopsy system. J Ultrasound Med. 2009;28:1561–8.

    PubMed  Google Scholar 

  21. Ficarra V, Antoniolli SZ, Novara G, et al. Short-term outcome after high-intensity focused ultrasound in the treatment of patients with high-risk prostate cancer. BJU Int. 2006;98:1193–8.

    Article  PubMed  Google Scholar 

  22. Susani M, Madersbacher S, Kratzik C, et al. Morphology of tissue destruction induced by focused ultrasound. Eur Urol. 1993;23(S1):34–8.

    PubMed  Google Scholar 

  23. Van Leenders GJ, Beerlage HP, Ruijter ET, de la Rosette JJ, van de Kaa CA. Histopathological changes associated with high intensity focused ultrasound (HIFU) treatment for localised adenocarcinoma of the prostate. J Clin Pathol. 2000;53:391–4.

    Article  PubMed  Google Scholar 

  24. Linder U, Lawrentshuck N, Trachtenberg J. Focal laser ablation for localized prostate cancer. J Endourol. 2010;24:791–7.

    Article  Google Scholar 

  25. Dalfior D, Delahunt B, Brunelli M, et al. Utility of racemase and other immunomarkers in the detection of adenocarcinoma in prostatic tissue damaged by high intensity focused ultrasound therapy. Pathology. 2010;42:1–5.

    Article  PubMed  CAS  Google Scholar 

  26. Zlotta AR, Djavan B, Matos C, et al. Percutaneous transperineal radiofrequency ablation of prostate tumour: safety, feasibility, and pathological effects on human prostate cancer. Br J Urol. 1998;81:265–75.

    Article  PubMed  CAS  Google Scholar 

  27. Cattoretti G, Becker MHG, Key G, et al. Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. J Pathol. 1992;168:357–63.

    Article  PubMed  CAS  Google Scholar 

  28. Zellweger T, Gunther S, Zlobec I, et al. Tumour growth fraction measured by immunohistochemical staining of Ki67 is an independent prognostic factor in preoperative prostate biopsies with small-volume or low-grade prostate cancer. Int J Cancer. 2009;124:2116–23.

    Article  PubMed  CAS  Google Scholar 

  29. Mostofi FK, Sesterhenn IA, Davis Jr CJ. A pathologist’s view of prostatic carcinoma. Cancer. 1993;71:906–32.

    Article  PubMed  CAS  Google Scholar 

  30. Bostwick DG, Egbert BM, Fajardo LF. Radiation injury of the normal and neoplastic prostate. Am J Surg Pathol. 1982;6341–55.

    Google Scholar 

  31. Brawer MK, Nagle RB, Pitts W, et al. Keratin immunoreactivity as an aid to the diagnosis of persistent adenocarcinoma in irradiated human prostates. Cancer. 1989;63:454–60.

    Article  PubMed  CAS  Google Scholar 

  32. Scardino PT, Guemero WG, Carlton Jr CE. Surgical staging and combined therapy with radioactive gold grain implantation and external irradiation. In: Johnson DE, Boileau MA, editors. Genitourinary tumors: fundamental principles of surgical techniques. New York: Grune and Stratton; 1982. p. 75–80.

    Google Scholar 

  33. Ahmed HU, Freeman A, Kirkham A, Sahu M, Scott R, Allen C, et al. Focal therapy for localized prostate cancer: a phase I/II trial. J Urol. 2011;185:1246–54.

    Article  PubMed  CAS  Google Scholar 

  34. Lindner U, Lawrentschuk N, Trachtenberg J. Image guidance for focal therapy of prostate cancer. World J Urol. 2010;28:727–34.

    Article  PubMed  CAS  Google Scholar 

  35. Muto S, Yoshii T, Saito K, Kamiyama Y, Ide H, Horie S. Focal therapy with high-intensity-focused ultrasound in the treatment of localized prostate cancer. Jpn J Clin Oncol. 2008;38:192–9.

    Article  PubMed  Google Scholar 

  36. Ellis D, Manny TB, Rewcastle JC. Focal cryosurgery followed by penile rehabilitation as primary treatment for localized prostate cancer: initial results. Urology. 2007;S6A:9–15.

    Article  Google Scholar 

  37. Lambert E, Bolte K, Masson P, Katz AE. Focal cryosurgery: encouraging health outcomes for unifocal prostate cancer. Urology. 2007;69:1117–20.

    Article  PubMed  Google Scholar 

  38. Onik G. Rationale for a “male lumpectomy,” a prostate cancer targeted approach using cryoablation: results in 21 patients with at least 2 years of follow-up. Cardiovasc Intervent Radiol. 2008;31:98–106.

    Article  PubMed  Google Scholar 

  39. Bahn DK, Silverman P, Lee F, Badalament R, Bahn ED, Rewcastle JC. Focal prostate cryoablation: initial results show cancer control and potency preservation. J Endourol. 2006;20:688–92.

    Article  PubMed  Google Scholar 

  40. Dhar N, Cher ML, Scionti SM, Lugnani FM, Jones JS. Focal/partial gland prostate cryoablation: results of 795 patients from multiple centers tracked with the COLD registry. J Urol. 2009;S181:715.

    Google Scholar 

  41. Barqawi A, Crawford ED. Focal therapy in prostate cancer: future trends. BJU Int. 2005;95:273–4.

    Article  PubMed  Google Scholar 

  42. Lindner U, Weersink RA, Haider MA, et al. Image guided photothermal focal therapy for localized prostate cancer: phase I trial. J Urol. 2009;182:1371–7.

    Article  PubMed  CAS  Google Scholar 

  43. Blana A, Brown SCW, Chaussy C, et al. High-intensity focused ultrasound for prostate cancer: comparative definitions of biochemical failure. BJU Int. 2009;104:1058–62.

    Article  PubMed  CAS  Google Scholar 

  44. Purandare NC, Rangarajan V, Shah SA, et al. Therapeutic response to radiofrequency ablation of neoplastic lesions: FDG PET/CT findings. Radiographics. 2011;31:201–13.

    Article  PubMed  Google Scholar 

  45. Sciarra A, Barentsz J, Bjartell A, et al. Advances in magnetic resonance imaging: how they are changing the management of prostate cancer. Eur Urol. 2011;59(6):962–77.

    Article  PubMed  Google Scholar 

  46. Kalbhen CL, Hricak H, Shinohara K, et al. Prostate carcinoma: MR imaging findings after cryosurgery. Radiology. 1996;198:807–11.

    PubMed  CAS  Google Scholar 

  47. Cirillo S, Petracchini M, D’Urso L, et al. Endorectal magnetic resonance imaging and magnetic resonance spectroscopy to monitor the prostate for residual disease or local cancer recurrence after transrectal high-intensity focused ultrasound. BJU Int. 2008;102:452–8.

    Article  PubMed  Google Scholar 

  48. Pickett B, Ten Haken RK, Kurhanewicz J, et al. Time to metabolic atrophy after permanent prostate seed implantation based on magnetic resonance spectroscopic imaging. Int J Radiat Oncol Biol Phys. 2004;59:665–73.

    Article  PubMed  Google Scholar 

  49. Coakley FV, Teh HS, Qayyum A, et al. Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology. 2004;233:441–8.

    Article  PubMed  Google Scholar 

  50. Nogueira L, Wang L, Fine SW, et al. Focal treatment or observation of prostate cancer: pretreatment accuracy of transrectal ultrasound biopsy and T2-weighted MRI. Urology. 2010;75:472–7.

    Article  PubMed  Google Scholar 

  51. Roethke MC, Lichy MP, Jurgschat L, et al. Tumorsize dependent detection rate of endorectal MRI of prostate cancer: a histopathologic correlation with whole-mount sections in 70 patients with prostate cancer. Eur J Radiol. 2011;79(2):189–95.

    Article  PubMed  Google Scholar 

  52. Ikonen S, Karkkainen P, Kivisaari L, et al. Magnetic resonance imaging of clinically localized prostatic cancer. J Urol. 1998;159:915–9.

    Article  PubMed  CAS  Google Scholar 

  53. De Visschere PJ, De Meerleer GO, Futterer JJ, Villeirs GM. Role of MRI in follow-up after focal therapy for prostate carcinoma. Am J Roentgenol. 2010;194: 1427–33.

    Article  Google Scholar 

  54. Haider MA, Chung P, Sweet J, et al. Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:425–30.

    Article  PubMed  Google Scholar 

  55. Rouvière O, Valette O, Grivolat S, et al. Recurrent prostate cancer after external beam radiotherapy: value of contrast-enhanced dynamic MRI in localizing intraprostatic tumor–correlation with biopsy findings. Urology. 2004;63:922–7.

    Article  PubMed  Google Scholar 

  56. Delongchamps NB, Rouanne M, Flam T, et al. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int. 2010;107: 1411–8.

    Article  PubMed  Google Scholar 

  57. Kim CK, Park BK, Lee HM, Kim SS, Kim EJ. MRI techniques for prediction of local tumor progression after high-intensity focused ultrasound ablation of prostate cancer. Am J Roentgenol. 2008;190:1180–6.

    Article  Google Scholar 

  58. Cheikh AB, Girouin N, Ryon-Taponnier P, et al. MR detection of local prostate cancer recurrence after transrectal high-intensity focused US treatment: preliminary results. J Radiol. 2008;89:571–7.

    Article  PubMed  Google Scholar 

  59. Ellingson BM, Schmit BD, Ulmer JL, Kurpad SN. Diffusion tensor magnetic resonance imaging in spinal cord injury. Concepts Magn Reson A. 2008;32A:219–37.

    Article  Google Scholar 

  60. Finley DS, Ellingson BM, Zaw T, et al. Diffusion tensor magnetic resonance tractography of the prostate: fesibility for mapping periprostatic fibers. Urology. 2012 Jul;80(1):219–23.

    Google Scholar 

  61. Scheidler J, Hricak H, Vigneron DB, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic: imaging-clinicopathologic study. Radiology. 1999;213:473–80.

    PubMed  CAS  Google Scholar 

  62. Kurhanewicz J, Vigneron DB, Hricak H, et al. Prostate cancer: metabolic response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging. Radiology. 1996;200:489–96.

    PubMed  CAS  Google Scholar 

  63. Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging. 2002;16:451–63.

    Article  PubMed  Google Scholar 

  64. Pucar D, Shukla-Dave A, Hricak H, et al. Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy-initial experience. Radiology. 2005;236:545–53.

    Article  PubMed  Google Scholar 

  65. Menard C, Smith IC, Somorjai RL. Magnetic resonance spectroscopy of the malignant prostate gland after radiotherapy: a histopathologic study of diagnostic validity. Int J Radiat Oncol Biol Phys. 2001;50:317–23.

    Article  PubMed  CAS  Google Scholar 

  66. Parivar F, Hricak H, Shinohara K, et al. Detection of locally recurrent prostate cancer after cryosurgery: evaluation by transrectal ultrasound, magnetic resonance imaging, and three-dimensional proton magnetic resonance spectroscopy. Urology. 1996;48:594–9.

    Article  PubMed  CAS  Google Scholar 

  67. Beer A, Eiber M, Souvatzoglou M, Schwaiger M, Krause BJ, et al. Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol. 2011;12:181–91.

    Article  PubMed  Google Scholar 

  68. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6,336 patients and results of a survey. Ann Surg. 2004;240:205–13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Finley M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Finley, D.S., Belldegrun, A.S. (2013). Setting Rules for Post-ablation and Follow-Up. In: Polascik, T. (eds) Imaging and Focal Therapy of Early Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-182-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-182-0_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-181-3

  • Online ISBN: 978-1-62703-182-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics